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ABSTRACT

There is much current interest in the use of controlled excitations to manage
various types of flows. This work focuses on the use of dual-mode forcing to alter
dramatically the structure of round turbulent jets. Properly-combined axial and
helical excitations can cause a round jet to split into two distinct jets. This Y-shaped
jet, known as a bifurcating jet, exhibits spreading angles as high as 80 degrees.
Vortex rings are formed at the jet exit and propagate along the two branches of the
jet.

A vortex-filament code was developed for simulating the large-scale features of
bifurcating jets. The motion and interaction of the vortex structures in this flow
are tracked in a three-dimensional, Lagrangian coordinate system. This simulation
showed thzat inviscid vortex interactions cause the dramatic changes in jet develop-

ment and that spreading angle increases with axial Strouhal number.

The experimental apparatus consists of an acoustically-excited, 2-cm-diameter
air jet. The jet evolution is documented by flow visualization at velocities up to 75
m/s, Reynolds numbers up to 100,000, and Mach numbers up tc 0.22. Instantaneous
and phase-averaged cross-sections of the jet reveal the effects of forcing amplitude
on the structure and spreading angle of axially-excited, helically-excited, and bifur-
cating jets. The primary conclusions of this experiment are that'dual-mode acoustic
excitation can produce bifurcation in air jets at high Reynolds numbers and that
the jet spreading angle increases with both excitation amplitudes, Additionally,
the excitation amplitude required to produce bifurcation increases with Reynolds

number, but the corresponding excitation Strouhal number is invariant.

vii




TABLE OF CONTENTS

Acknowledgments

Abstract

Table of Contents

List of Tables

List of Figures

Nomenclature
Chapter
1. INTRODUCTION .
1.1 Background
1.1.1 Role and evolution of large structures
1.1.2 Preferred modes of axisymmetric shear layers
1.1.3 Characteristics of bifurcating and blooming jets
1.2  Objectives .
1.3  Overview
1.4 Summary of results .

2. NUMERICAL METHOD

2.1
2.2
2.3
24
2.5

Discrete-vortex method

Vortex filaments

Jet velocity function

Algorithm .

Refinements

2.5.1 Multi-filament shear layer .
2.5.2 Mului-filament vortex ring .

2.5.3 Spline approximation .

3. NUMERICAL RESULTS .

3.1

3.2

Validation of code

Simulation of simple vortex interactions

ix

Page

.o
1z
I

L 2]

I

[y

O 3 O v &N e

11
12
i5
17
19
.21
. 22
. 24
. 24
.27
.27
. 29




3.3
3.4
3.5
3.6
3.7
3.8

EXPERIMENTAL APPARATUS AND APPROACH

4.1
4.2
4.3
4.4
4.5

Analysis of a finite train of rings
Simulation of bifurcating jet

Roli-up of excited shear layer

Rings with non-uniform cores
Improvement by spline approximation . .

Summary

Low-speed jet apparatus
High-speed jet apparatus
Excitation system
Fiow-visualization techniques

Velocity and pressure measurements

EXPERIMENTAL RESULTS .

5.1 Natural jet

5.2  Axially-excited jet

5.2 Helically-excited jet .

5.4 Bifurcating jet

5.5 Summary

DISCUSSION .

6.1 Natural states of axisymmetric jets

6.2 Structure and features of bifurcating jets
6.3 Role of excitation frequency

6.4 Role of excitation amplitude and phase
6.5 Comparison of computations and experiments
6.6 Mecchanism of bifurcation

6.7 Some thoughts on jet flow control

CONCLUSIONS AND RECOMMENDATIONS .

71

7.2

Conclusions

Recommendations

. 31
. 33
. 36
. 39
. 40
. 42
. 43
. 44
. 45
. 48
. 49
. 53
. 57
. 57
. 61
. 66
. 67
.11
. 73
.13
. 74
. 15
. 76
.17
. 78
.79
. 81
. 81
. 82




Appendix A: Derivation of Induced-Velocity Functions . . . . . . . . . 85

Appendix B: Program Listings . . . . . . . . . . . . . .. .. . . 89

Appendix C: Tables of Parameters . . . . . . . . . . . . . . .. 127

References . . . . . . . . . . e e e P b/

Figures . . . . . . . . . . . . ... ... .. e e e v+ . . . 135
xi




LIST OF TABLES

Table Page
C.1  Parameters of Bifurcating Jet Simulations . . . . . . . . . . . . 127
C.2 Comparison of Physical Parameters . . . . . . . . . . . . . . . 127
C.3 Parameters of Bifurcating Jet Experiments. . . . . . . . . . . 128

xiii

L



Figure
1.1

1.2

1.3

1.4

2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10
3.11

3.12

LIST OF FIGURES

Side and end views of bifurcating jet at Re = 4300 and St = 0.46

(from Lee & Reynolds 1985b).

Side and end views of blooming jet at Ke = 4300 and St = 0.46

(from Lee & Reynolds 1985b).

Dependence of bifurcation angle on axial excitation frequency

(from Lee & Reynolds 1985b).

Mean velocity profile of bifurcating jet in the bifurcating plane

(from Lee & Reynolds 1985b). Re = 4300 and St = 0.48.

Schematic of numerical model.

Flow chart of numerical algorithm.

Calculation of self-induced velocity. .

Velocity field of a vortex ring. 6 = 0.1.

Velocity field in the core of a vortex ring. 6 = 0.1.
Upstream velocity field of jet source flow.

Velocity field near the exit of jet source flow.

Downstream velocity field of jet source flow.

Comparison of jet function velocity fields at different 4:

(a) @ = 0.1, (b) & = 0.01.

Evolution of unexcited, axisymmetric shear layer
(source flow not included).

Example of numerical instability in axisymmetric
shear layer calculations.

Convection velocity of a train of rings (N, = 41).
Instantaneous velocity profiles of a train of rings for
(a) Ny =5 and (b) N, = 41.

Mean streamwise velocity profile of a train of rings for

(a) Ny =5 and (b) N, = 41.

XV

Page

135

136

137

138
139
140
141
142
143
144
145
146

147

148

149

151




3.13
3.14

3.15

3.16

3.17

3.18
3.19

3.24

3.25

3.27

3.28

3.29
3.30

Momentum flux of a train of rings (Ny = 41).
Comparison of bifurcating jet simulations at St; = 0.3
(aj without and (b) with source flow.

Comparison of bifurcating jets at St; = 0.30 and at

(a} Ay == 0.1 and (b) Ay = 0.5.

Comparison of bifurcating jets at St; = 0.35 and at

(a) Az = 0.3 and (b) Aj = 0.5.

Evolution of bifurcating jet at St = 0.30 and A = 0.5.
Evolution of bifurcating jet at St; = 0.40 and A, = 0.5.
tnd views of bifurcating jets at A; = 0.5 and at

(a) Sty = 0.30 and (b) St = 0.40.

Bifurcating jet at St; = 0.42 and Ay = 0.5 and

2t two different times.

Dependence of bifurcation angle on St; (4, = 0.5).
Orset of bifurcation at (a) Sts = 0.30, (b) Sty = 0.42,
and (c) Sty = 0.43.

Initial ring formation in the (a) absence and

(b} presence of source flow.

Comparison of (a) unforced and (b) forced (As = 0.2)
axisymmetric shear layers.

Forced axisymmetric shear layers corresponding to different
matching schemes at St; = 0.4 and Az = 0.2:

{a) quadrature, (b) integral, and (c) growth.
Axisymmetric shear layer simulations using (a) 10 and
(b) 20 filaments per excitation period (growth matching).
Evolution of forced axisymmetric shear layer

at St, = 0.4 and A, = 0.2.

Effect of forcing level ((a) Ag = 0.5 and (b) A, = 0.20) on
axisymmetric shear layer development at St, = 0.4.

Effect of temporal variations of core radius.

Side view of initial development of helically-excited jet (A = 0.5).

xvi

153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168

169
170

_




ad BN EN BN N BN B I B =

3.31

3.32

3.33

3.34

4.1

4.3

W
—

Ut
o2}

(@41
-3

5.12

End view of initial development of helically-excited jet {4} = 0.5).

Interaction of a pair of side-by-side, multi-filament rings.
Interaction of a pair of eccentric, multi-filament rings.
Calculation of self-induccd velocity by linear-segment

and cubic-spline methods.

Schematic of low-speed apparatus.

Schematic of high-speed apparatus.

Streamwise velocity fluctuations (at z/D = 0.05 and r/D = 0.0)
corresponding te different excitation levels produced by
internal driver at 2060 Hz.

Mean and fluctuating velocity profiles at Re = 10,000

and 2/ D = 0.1.

Mean and fluctuating velocity profiles at Re = 25,000

and z/D = 0.05.

Mean and fluctuating velocity profiles at Re = 50,000

and z/Ly = 0.05.

Mean and fluctuating velocity profiles at Re = 100,000

and z/D = 0.05.

Axisymmetric shear layer profiles at various Reynolds numbers.
Comparison of shear layer profiles with and without blowing
(Re = 50,000). .

Comparison of shear layer profiles with and without blowing
(Re = 100, 000).

Instantaneous cross-section of natural jet at Re = 50,000.
Instantaneous cross-section of natural jet at Re = 100,000.
Instantaneous cross-section of natural jet at Re = 100, 000.
Multiple-exposure cross-section of natural jet at Re = 50,000
(F = 17).

Multiple-exposure cross-section of natural jet at Re = 100,000

(F - 17).

xvii

171

172

173

174

175

176

177

178

179

180

181
182

183

183

184

185

186

187

188




.13 Multiple-exposure cross-section of natural jet at Re = 25,000

e 189

(41

5.14  Muitiple-exposure cross-section of natural jet at Re = 25,000
S 190
5.15 Comparison of natural and axially-excited jets at Re = 10, 000. 191
5.16 Axially-excited jet at Re = 20,000, St; = 0.55,
and pg = 16% (F=1). . . . . . . . . . .. ... ... 162
17 Axially-excited jet at Ke = 10,000, St, = 0.55,

(41}

and py = 12% (F=1). . . . . . . . . . ... 193
.18  Instantaneous pictures of axially-excited jet at different phases

of excitation (Ke = 10,000, St; = 0.55, and p, = 12%). . . . 194

(911

5.19 Phase-averaged pictures of axially-excited jet at phase intervals

of 9G” (Re = 100,000, Stg = 0.55, and ps =2.8%). . . . . . 195
5.20  Axiaily-excited jet at Re = 50,000, St; = 0.55,

and po = 14% (F=1). . . . . . . . . . . .. ..., 196
5.21  Axialiy-excited jet at Re = 100,000, St, = 0.55,

and pg =54% (F=1). . . . . . . . . ... .. ... 197

5.22 Axially-excited jet at Re = 50,000 and St; = 0.55 and at

different ps: (a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13%. F=1. 198
5.23  Axially-excited jet at Re = 50,000 and Stgs = 0.55 and at

different p,: {a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13%. F =17. 199
5.24  Axially-excited jet at Re = 100,000 and St; = 0.55 and at

different py: (2) 0.3%, (b) 0.6%, (c) 2.8%, and (d) 5.5%. F =1. 200
5.25 Axially-excited jet at Re = 100,000 and St; = 0.55 and at

different pa: (a) 0.3%, (b) 0.6%, (c) 2.8%, and (d) 5.5%. F =17. 201
5.26  Axially-excited jet at Re = 25,000, St; = 0.55,

and g; = 18% (F=4). . . . . . . . ... 202
5.27  Axially-excited jet at Re = 25,000 and St, = 0.55 and at

different py: {2) 4.6%, (b) 11%, (c) 22%, and (d) 43%. F = 8. 203
5.28  Axiaily-excited jet at Re = 100,000 and p, = 2.8% and at

different 5t,: (a) 0.55, (b) 0.60, and (c) 0.65. F =17. . . . 204

xviii




- B N B O Y - YA B e

5.29

5.30

5.40

Axially-excited jet at Re = 50,000 and St,; =- C.55 and
different ps: (a) 0%, (b) 0.5%, and (c) 2.1%. F = 8.

The axial excitation is produced by the driver in the plenum.
Comparison of the effects of (a) internal (p = 0.24% and F = 8)
and (b) external (p = 0.30% and F = 17) axial forcing

at KHe = 100,000 and St; = 0.55.

Comparison of the effects of (a) internal (p = 1.9% and F = 8)
and (b) external (p = 2.7% and F = 17) axial forcing

at Re = 100,000 and St; = 0.55.

Helically-excited jet at Re = 25,000, St; = 0.28,

and p, = 0.2% (F = 1).

Helically-excited jet at Re = 50,000, St; = 0.28,

and p, =24% (F=1). . .

Helically-excited jet at Re = 100,000, St = 0.27,

and py, = 0.7% (F = 1).

Helically-excited jet at Re = 50,000 and St, = 0.28 and at

different py: (a) 0.3%, (b) 0.6%, (c) 1.2%, and (d) 2.4%. F = 17.

Pelically-excited jet at Re = 100,000 and St = 0.27 and at

different pp: (2) 0.1%, (b) 0.2%, (c) 0.4%, and (d) 0.7%. F = 17.

Helically-excited jet at Re = 100,000 and p;, = 0.3% and at
different Sty: (a) 0.27, (b) 0.30, and (c) 0.32. F = 17.
Helically-excited jet at Re = 100,000 and pj, = 0.7% and at
different St,: (a) 0.27, (b) 0.30, and (c) 0.32. F = 17.
Close-up view of helically-excited jet at Re = 100,000 and

pn = 0.3% and at different Stj: (a) 0.27, (b) 0.30, and (c) 0.32.
F =17.

Close-up view of helically-excited jet at Re = 100,000 and

pr = 0.7% and at different St,: (a) 0.27, (b) 0.30, and (c) 0.32.
F =117

Xix

205

206

207

208

209

210

211

212

213

214

215

216




5.41

5.42

5.43

5.44

5.45

5.48

5.49

5.50

5.53

Phase-evolution of a helically-excited jet at Re = 100,000,
Sty =0.27, and gy, = 0.7% (F = 17).

The phase increment is 45°. . . . . . . e e e e
Bifurcating jet at Re = 10,000, St; = 0.55, p, = 12%,
and p,, = 3.8%. F=1.
Phase-evolution of bifurcating jet at Re = 10,000, St; = 0.55,
Pa=12%,and p, =3.8%. F=1. . . . . . . . .. ... ..
Bifurcating jet at Re = 50,000, Stq = 0.55, pg = 6.5%,

---------------

and pp, =12%. F=1. . . . . . .« v v
Bifurcating jet at Re = 100,000, St, = 0.55, p, = 1.4%,
and pp, =0.71%. F=1. . . . . . . . . . . 0.

Bifurcating jet at Re = 100,000, St, = 0.55, p, = 2.8%,

and pp =036%. F=1. . . . . . . . . .« o oo v
Phase-evolution of bifurcating jet at Re = 100,000, St = 0.55,

P = 2.8%, and pj, = 0.71%. F = 17.

The phase increment is45°. . . . . . . . . . . . . . .. ..
Bifurcating jet viewed in the bifurcating and transverse planes

(Re = 100,000 and St = 0.55). F = 8. The axial excitation

is produced by the driver in the plenum (p; = 1.8% and p, = 1.4%).

Cross-sections of the bifurcating jet in different azimuthal planes
(e = 100,000, St; = 0.55, fs = 1.4%, and pp = 0.69%). F = 17.
The phase increment between successive planes is 30°. . . . . .
Bifurcating jet at Re = 50,000, St, = 0.55, p; = 1.4%,

and p,, =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F =1.
Bifurcating jet at Re = 50,000, St, = 0.55, p; = 6.5%,

and p;, =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F = 1.
Bifurcating jet at Re = 50,000, St, = 0.55, p; = 1.4%,

and p;, =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F = 17.
Bifurcating jet at Re = 50,000, Sty = 0.55, f, = 6.5%,

and p;, =(a) 0.30%, (b) 0.60%, (c) 1.2%, (d) 2.4%. F =17.

217

228

231

232

233

234




5.54

5.55

5.57

5.58

5.59

5.60

5.61

5.62

5.63

5.64

5.65

Bifurcating jet at Re = 50,000, Sty = 0.55, ps = 6.5%,

and Pr=1.2%. F=1T. . .« « v e e e e it 235
Comparison of (a) phase-averaged (F = 17) and (b) instantaneous (F = 1)
realizations of a bifurcating jet (Re = 100,000, St; = 0.55,

Pa =2.8%,and pp, =0.7T1%). . . . . . . . ..o 236
Bifurcating jet at Re = 100,000, St, = 0.55, p, = 2.8%,

and pj, =(a) 0.09%, (b) 0.18%, (c) 0.36%, (d) 0.71%. F =17. . . . . . 237
Bifurcating jet at Re = 100,000, St, = 0.55, pp, = 0.36%,

and pq =(a) 0%, (b) 0.29%, (c) 1.4%, (d) 2.8%. F=1. . . . . ... . 238
Bifurcating jet at Re = 100,000, St, = 0.55, p;, = 0.36%,

and o =(a) 0.20%, (b) 1.4%, (c) 2.8%, (d) 5.5%. F=17. . . . . . . . 239
Bifurcating jet at Re = 100,000, St, = 0.55, p, = 1.4%,

and pp = 0.71%. F=17. . o o o o i e 240
Bifurcating jet at Re = 100,000, 5, = 5.5%, p; = 0.69%,

and St; =(a) 0.55, (b) 0.60,and () 0.65. F=1. . . . . . . . . ... 241
Bifurcating jet at Re = 100,000, p, = 5.5%, pj = 0.69%,

and Stq =(a) 0.55, (b) 0.60, and (c) 0.65. F =17. . . . . . . .. .. 242
Bifurcating jet at Re = 100,000, p, = 2.8%, pj, = 0.29%,

and Stq =(a) 0.55, (b) 0.60, and (c) 0.65. F =17. . . . . . . . ... 243

Comparison of the effects of (a) separate (pa = 0.95%, p;, = 0.36%, and

F = 8) and (b) combined (ps = 1.4%, p;, = 0.36%, and F = 17)

excitations on bifurcating jets at Re = 100,000 and St, =0.55. . . . . 244
Comparison of the effects of (a) separate (p, = 1.8%, pp, = 1.4%, and

F = 8) and (b) combined (ps = 2.8%, p, = 1.4%, and F = 17)

excitations on bifurcating jets at Re = 100,000 and St; =0.55. . . . . 245
Dependence of bifurcating jet’s spreading angle on excitation

amplitude at Stz = 0.55 and at Re = (a) 100,000 and (b) 50,000.

Axial and helical excitations are both produced by the external

acousticdrivers. . . . . . . . . . . . . . ... e e e e e . . .. 246




5.66 Dependence of bifurcating jet’s spreading angle on excitation
amplitudes at Re = 10,000 and 100,000 and at St; = 0.55.
Axial excitation is produced by internal acoustic driver. . . . 248
5.67 Velocity profiles of natura: and bifurcating jets at Re = 100,000
and z/D = 8.5. Separate excitations are used in the bifurcating

jet, with p, = 18% and pp, =14%. . . . . . . . . . ... 249




NOMENCLATURE

Roman Symbols

AG) Ah

axial and helical excitation amplitude

diameter of nozzle or of cylindrical vortex sheet
anemometer bridge voltage

complete elliptic integral of the second kind
King’s law parameter

frequency

axial and helical excitation frequencies

natural frequency of shear layer

vortex-passage frequency

spatially-averaged, nondimensional, axial momentum flux or
number of light pulses per exposure

size of subinterval

intermediate integral

King’s law parameter

complete elliptic integral of the first kind
measured distance between vortical structures
arguments of elliptic integrals

node index or King’s law exponent

rms acoustic perturbation

nondimensional pressure perturbation, p'/( %pU 2)
reference pressure, 2 x 10™° Pa

partial integral over intervals 1t to j

radial coordinate

three-dimensional space curve

radius of vortex ring or of cylindrical vortex sheet
ratio of axial to helical frequency

ring-spacing ratio
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Re Reynolds number, UD /v
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Chapter 1
INTRODUCTION

Much current interest in the field of fluid mechanics relates to the use of con-
trolled excitations to manage various types of flows. This work focus on the use of
dual-mode, dual-frequency, acoustic forcing to alter dramatically the structure of
round, turbulent, air jets. Dual-mode refers to the combination of axial and helical
perturbations. Dual-frequency denotes that these two different types of perturba-

tions are single frequency excitations of differing frequency.

Properly-combined axial and helical excitations can cause a round jet to split
into two distinct jets. This Y-shaped jet, known as a bifurcating jet, exhibits spread-
ing angles as high as 80°. Vortex rings are formed at the jet exit and propagate
along the two branches of the jet. This study is a combined computational and ex-
perimental invcstigation of bifurcating jets at high Reynolds numbers. The aim of
this effort is to understand the mechanism causing bifurcation and to document vi-
sually the response of the bifurcating jet to variations in several flow and excitation

parameters,

1.1 Background

The sensitivity of jets to sound has fascinated researchers for many decades. In
the middle of the 19th century, Leconte (1858) and Tyndall (1867) demonstrated
this sensitivity in jets with and without combustion. Early in this century, Brown
(1935) demonstrated that laminar jets develop vortex structures and increase in

spreading angle in response to acoustic excitation at various critical frequencies.

Understanding the nature of a jet’s response to sound and other perturbations
is a key to knowing how to use controlled excitations to transform a jet from its
natural state to some desired state. Due to the Kelvin-Helmholtz instability, the

shear layer of a jet naturally rolls up into distinct vortex rings in a somewhat random




manner. These structures are directly related to a jet’s growth, and their formation

is very sensitive to perturbations over a wide range of frequencies.

There is a tremendous amount of information in the literature about the struc-
ture, evolution, and control of turbulent shear layers. For an extensive overview,
the reader should consult the reviews by Cantwell (1981) and Ho & Huerre (1984).
The works cited in the following pages are those which, to our knowledge, relate

most closely to the present study.

1.1.1 Role and evolution of large structures

The current interest in the role of organized structures in turbulent shear flows
v.a5 sparked primarily by the works of Crow and Champagne (1971), Brown and
Roshko (1974), and Winant and Browand (1974). Crow and Champagne (1971)
found that the structure of round turbulent jets at a Reynolds number, based on
diameter, around 10* includes large-scale vortex ‘puffs’. Brown and Roshko (1974)
showed that ‘large coherent structures’ are the dominant feature of mixing layers
even over a wide range of density ratios. As a result of their study of planar mixing
layers, Winant and Browand (1974) proposed the pairing of large-scale vortex struc-
tures as the mechanism of mixing layer growth at moderate Reynolds numbers. The

term ‘pairing’ refers to the coalescence of two vortices into a single, larger structure.

Zaman and Hussain (1980) proposed that the pairing of structures in axisym-
metric shear layers can be classified in terms of a shear layer mode and a jet column
mode. The ‘shear layer mode’ refers to the pairing of the small vortices initially
formed by the shear layer. The spacing of these vortices is of the order of the shear
layer thickness. The ‘jet column mode’ refers to the pairing of the large vortices
formed from the smaller ones. The typical spacing between these larger structures
is of the order of the jet diameter. They found that pairing in the shear layer mode
is most likely to occur if one excites the shear layer at a Strouhal number, based
on initial momentum thickness, of 0.012. Pairing in the jet column mode is most

likely to occur at a Strouhal number, based on diameter, of 0.85.
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Other researchers have also shown that the vortex formation and pairing pro-
cesses can be controlled by axial excitation. Bouchard and Reynolds (1981) used
axial perturbations to control jet growth by enhancing or suppressing vortex pairing.
Ho and Huang (1982) caused several vortices to coalesce into one larger structure
by forcing a planar mixing layer at a subharmonic of its most-amplified frequency.
The number of vortices involved in a ‘collective interaction’ corresponds to the sub-
harmonic chosen. Ho and Huang found that high excitation levels (v/'/U =~ 2%)
are typically required to cause a collective interaction. At low excitation levels,
only vortex pairings occur. At very high levels, the mixing layer forms a large
vortex directly, bypassing the stage of vortex pairings or collective interactions. Ar-
bey & Williams (1984) demonstrated control of the generation of harmonics and
subharmonics in a jet by controlling the phase between the fundamentai and the

harmonically-related signal.

In a flow-visualization study of a round jet, Hussain and Clark (1981) showed
that the typical view of axisymmetric mixing layer growth by orderly vortex pair-
ings is not accurate at very high Reynolds numbers (Re = 360,000). Instead,
they observed that “most of the time the mixing layer is in a state of disorganiza-
tion, consisting of relatively smaller scale, random and diffuse turbulent motions.”
They found that the large scale structures did not evolve from complete pairings of
smaller structures. Typically, only segments of vortical structures would combine
(‘fractional pairing’), or one structure would engulf only part of another structure
(‘partial pairing’). However, axial forcing can produce a stable, orderly arrange-
ment of vortex structures (Lepicovsky et al. 1986). Lepicovsky et al. studied the
effects of axial forcing on heated (temperatures up to 800°K) and unheated jets in

the ranges of 350,000 < Re < 1,300,000 and 0.3 < M <0.8.

By altering the orientation or shape of the large-scale structures in a jet, one
can modify the jet’s spreading and entrainment. In their work with inclined and
stepped nozzles, Wlezien and Kibens (1984) found that the jet shear layer growth

is enhanced in some azimuthal planes but suppressed in others. Ho and Gutmark




(1987) found that the entrainment ratio of a small-aspect-ratio elliptic jet is several

times higher than that of the corresponding circular jet.

1.1.2 Preferred modes of axisymmetric shear layers

While the interaction of vortex structures is a strongly nonlinear process, linear
stability theory can fairly accurately model many features of the initial development
of the mixing layer (Michalke & Hermann 1982, Ho & Huerre 1984, Gaster et
al. 1985, Samet & Petersen 1987, and Monkewitz 1988). These features include

amplification of disturbances, pairing events, and the effects of velocity ratio.

The shear layer amplifies disturbances over a broad frequency range. The fre-
quency corresponding to the peak of the amplification curve is typically called the
natural or most-amplified frequency. In planar and axisymmetric mixing layers
with a hyperbolic-tangent velocity profile and a velocity ratio of unity, the Strouhal
number (f8/U) of the initially most-amplified disturbance is 0.017 (Ho & Huerre
1984 and Michalke 1972). In axisymmetric shear layers, this Strouhal number in-
creases as the velc ity ratio decreases and as one moves downstream from the jet
exit {Michalke & Hermann 1982). The velocity ratio of a mixing layer is typically
defined as (Uy —Uj) /(U1 +Us), where U; and U; are the velocities of the two streams

and U; > U;. The corresponding momentum thickness, 8, of the axisymmetric shear

Both axisymmetric and helical disturbances are amplified in circular jets (Chan

layer is defined by

1977). The amplification of axisymmetric disturbances is stronger in the near field,
but the first-order helical distrubances are more strongly amplified in the far field
(Michalke & Hermann 1982 and Tso & Hussain 1987). Michalke & Hermann (1982)
also showed that according to stability theory the amplification of helical distur-
bances in the near field will be greater than that of axisymmetric ones if the dis-

turbance frequency is much less than the natural frequency.

In their study of excited circular jets with thin boundary layers, Crow and

Champagne (1971) found that the Strouhal number (fD/U) of the azisymmetric
4
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disturbance that can sustain the greatest total amplification is 0.3. They referred
to this disturbance as the ‘preferred mode’ of the jet. This concept of a preferred
mode implies the existence of a global instability in jet flows and should not be
confused with the initial shear layer instability discussed earlier. The preferred
mode also corresponds to the dominant large-scale, axisymmetric structures in un-
perturbed jets. Hussain and Zaman (1981) found that the shape and orientation
of these structures are essentially the same whether the boundary layer is laminar
or turbulent but that the characteristics of these structures depend on Reynolds
number.

The existence of a preferred mode has been confirmed by many researchers, but
there has been no agreement on the corresponding Strouhal number. Gutmark and
Ho {1983) found a variation from 0.24 to 0.64 in the works they surveyed. They
attributed this scatter to initial conditions. Initial conditions are important when
no controlled excitations are used since the initial conditions affect the formation of
the small vortex structures which subsequently combine to form the large structures

associated with the preferred mode.

Recently, Petersen and Samet (1987) have shown that the preferred mode can
be understood in terms of local instability concepts. They demonstrate that the
naturally-occurring shear layer instabilities scale with the local momentum thickness
and that the preferred mode corresponds to the local shear layer instability near
the end of the potential core. They attribute the apparent existence of a preferred
mode to the fact that beyond the potential core region helical disturbances are more

strongly amplified than are axisymmetric ones.

1.1.3 Characteristics of bifurcating and blooming jets

The work that laid the foundation for the current study is the work of Lee &
Reynoids (1982, 1985a, & 1985b). They discovered that dual-mode, dual-frequency
forcing can produce a bifurcating jet (Fig. 1.1). The bifurcating jet occurs when
the ratio, K¢, of the axial to the helical frequency is exactly two. When R is non-
integer between 1.6 and 3.2, the jet explodes into a shower of vortex rings (Fig. 1.2).

Since this jet reminded them of flowers blooming, they named it the blooming jet.
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The work of Lee & Reynolds involved mechanically-excited wuter jets in the
Reyvnolds nurnber range of 2,806 to 10,000. A diaphragm on the piston driving
the flow provided a large amplitude cxial excitation (u'/U = 17%). The helical
excitation was achieved by moving the tip of the nozzle in a circular orbit about the
nowinal jet centerline. The peak-to-peak displacement amplitude of the nozzle’s
tip was 4% of the jet diameter.

Lee & Reynolds (1985b) showed that bifurcating jets only occur within a range
of Strochal numbers (0.35-0.7). Over most of that range, the angle formed by the
two branches of the jet increases with Strouhal number (Fig. 1.3). They also found
that the mean velocity profile of a bifurcating jet has two peaks corresponding to the
jet’s two branches (Fig. 1.4). These two peaks remain separate and distinct up to
55 diameters from the jet exit. Their chemical reaction experiments demonstrated
that the bifurcating jet, along with blooming jets, exhibits enhanced mixing relative
to the natural jet.

This review has presented some of the past and present findings regarding the
role of large scale structures in shear flows, the existence of instability modes in
axisyminetric shear layers, and the characteristics of bifurcating and blooming jets.
The rest of this chapter summarizes the objectives, approach, and results of the

current work.

1.2 Objectives

Many important technological devices rely on jet flows to accomplish their pur-
pose. Thus, the better we understand the fundamental physical processes in jet
flows, the better we can design these devices. If we can dramatically alter the de-
velopment and characteristics of these flows, we can move beyond making small

irnprovermnenss in devices to developing new generations of such devices.

The present work is part of several related but separate research projects aimed
at furthering our understanding of how to control jet flows. The work of Bouchard

and Reynotds (1982) focused on the effects of various types of axial forcing on the




growth and mixing in an axisymmetric shear laye:r. Lee and Reynolds (1985b) built
on that work to demonstrate the effects of dual-mode forcing on the structure,
mixing, and momentum of round turbulent jets. The present work extends the
discoveries of Lee and Reynolds to high Reynolds numbers, considers the effects
of various flow parameters, and develops a model for the instability mechanism
in bifurcating jets. New studies recently initiated by Koch, Powell, and Reynolds
and by Juvet and Reynolds will apply closed-loop control to jet low manipulation
and will explore new forcing and measurement techniques applicable to complex jet
flows.
The present work had the following specific objectives:

L. To develop an understanding of the mechanisms causing bifurcation and bloom-

ng.

L]

. To develop a vortex-method code for simulating excited jet flows.
3. To produce bifurcating air jets at high Reynolds numbers by acoustic excitation.

4. To study the effects of Reynolds number, Strouhal number, and the amplitude
and phase of the excitation signals on the large-scale characteristics of bifurcat-

g jets.

1.3 Overview

The dominant presence ana related arrangement of vortex structures in both
the hifurcating and blooming jets suggest that the same mechanisms govern both
bifircating and blooming jets. While the blooming jet might prove to be the most
nseful in potential applications of dual-mode forcing, the bifurcating jet provides
4 hetter test case for studying the effects of various flow and excitation parame-
ters. Unlike the blooming jet, the bifurcating jet occurs at only one value of Ry.
This simmplifies our choice of this parameter. Additionally, since the bifurcating jet
spreads in only one plane, it is more amenable to laser-sheet visualization.

The current study of bifurcating jets involves both computational and exper-

¢

imnental research.  The computational work focuses primarily on understanding




the governing mechanism and on determining the dependence of jet spreading on
Strouhal number variations. The experimental work demonstrates the effectiveness
of dual-mode acoustic forcing in generating bifurcating jets and considers the effects
of Reynolds number, Strouhal number, and excitation amplitude and phase. Por-
tions of the computational and experimental results have been reported by Parekh

et al. (1983 & 1987), Leonard et al. (1985), and Parekh & Reynolds (1988).

Tiie computational work includes developing a jet simulation program, carrying
out a parametric study of bifurcating jets, and refining the numerical method.
The fundamental algorithm of this code is based on the discrete-vortex method
of Leonard (1980). Unlike typical finite-difference schemes, vortex methods are
grid free and Lagrangian in nature. They focus on calculating the evolution of
a given vorticity field. The velocity field is not calculated directly but is derived
from the computed vorticity field. Our program is written in Fortran and executed
on a Cray X-MP supercomputer. The refinements of this program consist of both

improvements in the physical model and in the numerical method.

Since many potential applications of bifurcating jets could involve gas jets at
higher Reynolds numbers, one of the first steps of the current experimental research
was demonstration of the concept of dual-mode forcing in moderate-Reynolds-
number air jets. A low-speed air jet apparatus using acoustic excitation was de-
signed and built. The initial results with this apparatus included jets at Reynolds
numbers of 10,000 and 20,000 which correspond to exit velocities of 7 and 14 m/s.

The required excitation frequencies range from 80 to 400 Hz.

The next step in this experimental work was the design and fabrication of a high-
speed air jet apparatus. Jets at Reynolds numbers up to 100,000 and Mach numbers,
M, up to 0.22 were studied in this facility. The corresponding exit velocities and
excitation frequencies range up to 75 m/s and 2000 Hz, respectively. A different
acoustic excitation system was developed to provide the required high levels of

acoustic power at these higher frequencies.




The experimental methods used included flow visualization, hot-wire anemome-
try, and condenser-microphone measurements. Since most of the questions of inter-
est concern global features of the jet structure, flow visualization was the primary
technique used. Additionally, flow visualization provides information that could
not be obtained by velocity measurements. With flow visualization one can see the
details and structure of the entire flow field in one instant of time. In some cases
a picture is worth a thousand probes! The velocity and acoustic measurements
provide information about the jet exit conditions and the amplitude and phase of

the excitation.

1.4 Summary of Results

A combined numerical and experimental study of the effects of excitation fre-
quency, amplitude, and phase on the development of moderate and high Reynolds
numbers jets is described in the following chapters. Some of the primary conclusions

of this work are

1. Dual-mode acoustic excitation can produce bifurcating jets in air at Reynolds

numbers up to 100,000 and Mach numbers up to 0.22.

2. The bifurcation phenomenon can be modeled as an inviscid, vortex-interaction
process. The axial excitation generates rings. The helical excitation displaces
them. The array of vortex rings produced by the combination of these two

excitations is unstable as a result of the rings’ mutually induced motions.

3. Bifurcation occurs only within a range of Strouhal numbers. Within that range,
the spreading angle increases with Strcuhal number. The numerical simulations
predict that range to be 0.30-0.42. However, the experiments show that the
upper limit should be around 0.65.

4. The spreading angle increases with both excitation amplitudes. The results
suggest, that bifurcation does not occur below certain levels and that jet spread-
ing does not continue to increase beyond certain limits. The bounds of this

amplitude range could not be clearly defined.




Other conclusions along with recommendations for related research are presented

in Chapter 7.
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Chapter 2
NUMERICAL METHOD

T 4he computational portion of inis research was carried out concurrently with
the last stages of the experimental work of Lee and Reynolds and was continued
beyond the time of conclusion of their work. This timing provided a beneficial op-
portunity to enhance each project by joint sharing of insights and results. The work
of Lee and Reynolds suggested that since vortex structures are such a dominant fea-
ture of bifurcating jets, the computations might be able to successfully simulate the
large scale evolution of the jet by calculating the evolution of the vortex structures.
Additionally, the calculations demonstrated the effects of some key parameters on
the jet evolution. These effects were subsequently investigated experimentally. The
results of the experiments of Lee and Reynolds and those of the computations pro-
vided valuable guidance in the planning of the high-Reynolds-number experiments

described in later chapters.

The objective of the computational work was not to calculate a detailed velocity
field for comparison with experiment. Rather, the objective was to determine the
mechanism causing bifurcation and to estimate the effect of various parameters on
the structure of the jet. Thus, a code was written and developed based on the
discrete-vortex method, and this code was used to study the effects of excitation
frequency and amplitude on the spreading of the bifurcating jet.

The discrete-vortex method is ideal for studying this type of flow as specified
by the objectives noted above. Instead of a grid, the computational structure is the
vortex elements of the flow. The basic approach taken here involves an analytical
function to describe the source flow and discrete, computational vortex elements to
represent the vortex rings formed at the jet exit. The flow is assumed to be inviscid

and constant in density.
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2.1 Discrete-vortex method

There are many different schemes that could be classified as discrete-vortex
methods. The main simiiarities aimnong them are that they discretize the vorticity
neid, caicalate ue evolution of the discrete vortex elements, and irack the miotion of
these elements in a Lagrangian reference frame. One can derive an equation for the
velocity field as a function of the vorticity field. The velocity field associated with
a vortex element is often referred to as the “induced” velocity field. The motion
of each vortex element is determined by the induced velocity due to itself and the
other vortex elements. It is this mutual induction process that is the heart of the

vortex method.

Since vortex methods typically assume an inviscid, constant-density fluid, they
are ideal for handling high Reynolds number flows in which the vorticity is confined
to small regions. By the theorems of Kelvin and Helmholtz, these assumptions
require that the vortex elements move just as fluid elements (see Batchelor 1967).
Thus, one can track the motion of fluid particles by simply tracking the motion
of the discrete vortices. To mark the motion of fluid particles that are not in the
vorticity containing regions of the flow, one can introduce possive particles in the

simulation and track their motion.

Though vortex methods have not had the benefit of all the attention that finite-
difference methods receive, many excelient researchers have succeeded in developing
vortex methods into a useful numerical method for solving certain classes of complex
fluid flows. For information on their work and on vortex methods in general, the
reader shou!d consult the excellent review articles by Saffman & Baker (1979) and
by Leonard (1980 & 1985). A recent example of the application of vortex methods
to a complex flow is the simntaiion of the three-dimensional evolution of a plane
mixing layer by Ashurst & Meiburg (1988). They found that the streamwise vortical
structures originate in the braid region between the larger spanwise structures of
the mixing layer and that the initial evolution of these structures can be explained

in terms of inviscid vortex dynamics.
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The equation that defines the velocity induced by a vortex element is known as

the Biot-Savart law for the velocity field. From the definition of vorticity,
w=Vxu, 2.1

and the constant-density continuity equation,
V.-u=0, 2.2

one finds that
Vig=-V xw. 2.3

Using the infinite medium Green’s function for Eqn. 2.3, one obtains the Biot-Savart

integral: ,
1 [ (x-x)xw(,t) ,,
X,t) = —— dx' + V¢, 24

where ¢ is the velocity potential that satisfies the inviscid boundary condition,
U - ngyrface = 0. 2.5

Vector quantities are denoted by bold face type.

If the vortex element is a circular line filament of infinitesimal thickness, two
difficulties arise. First, a logarithmic singularity in the induced velocity field exists
along the filament. Second, due to self-induced motion, the filament propagates at
infinite speed. To handle these difficulties, vortex methods typically use filaments
whose vorticity is smoothed out within a finite core. This makes physical sense as
well since vorticity is not concentrated on a line but spread out within a tube. True

line vortices can only be approached in superfluids.

Numerically, each vortex filament is represented by a three-dimensional, periodic
space curve, r;(£,t), wherz ¢ =1, 2, 3, ..., M (number of vortex elements), and ¢
is a material coordinate on the curve. When a space curve is defined in terms of
discrete points (or nodes) on the curve, one can choose £ to be a discrete variable

such as node number.
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The use of discrete vortex filaments with finite cores leads to the following
modified Biot-Savart integral which expresses the velocity, u, induced at a point, r

by all the vortex filaments in the flow:

ZM/[[r—r,(f Ui Fili d¢’, 2.6

Ir — r;(&,t)]2 + ao;2)3/?

where I'; is the circulation of vortex filament r;, o; is the filament’s core radius,
and a is a free parameter. To calculate the motion of a point on a vortex filament,

one uses the following similar equation:

ar._ [r(&,t) — f’,t)] % g—%’%(f’,t) ,
Z i / [lr(&,8) —x;(&, )|2 + a(o? + 01.2)/2]3/2 dg’. 2.7

Several different approaches to spreading the vorticity within the core have been
reported in the literature. Each approach leads to a different form of the Biot-Savart
integral. The approach that leads to Eqns. 2.6 and 2.7 is the Rosenhead-Moore
approximation as described by Leonard (1980).

By choosing a@ = 0.413, the self-induced velocity of a perfectly-circular ring
filament equals that of a vortex ring with a Gaussian distribution of vorticity for
o/R < 1 (Leonard 1980). The nominal core radius, o, is uniform along each

filament. For an inviscid flow, the dynamics of the core is defined by

d
i 0;’L;) = 2.8
where L;(t) is the instantaneous length of filament ¢. This corresponds to a conser-
vation of volume and results in the magnitude of the vorticity increasing when the
vortex filament is stretched. Core dynamics and the parameter a are also discussed

by Leonard (1980 & 1985).
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2.2 Vortex filamments

The vortex filaments used in this simulation are three-dimensional rings. One
way of representing a ring is by a set of straight segments connected end to end
with a set of nodes corresponding to the points where two segments are connected.
This approach permits one to simulate a ring that changes shape as well as size
and position. The velocity induced by a multi-segment filament is determined by
summing the contributions of each segment. The total induced velocity field is given

by the sum of the velocities induced by all the filaments in the flow field.

Since the segments defining each filament are straight segments, one can in-
tegrate Eqn. 2.6 exactly to obtain an explicit expression for the velocity induced
by any segment. The velocity induced at a point by the vortex vector defined by
rj(n +1,t) = r;(n,t) is given by

u(r) = ——< a-p) _ pfllrox(nt)xel 2.9

where n is the node number of the tail of the vector and

e =r;(n+1,t) —r;(n,t), 2.10a

e-(r—r;(n,t))

= 2.10b
r —r;(n,t)]? + ao,;?
| J 2 Il 2.10c
le]
A2 = q2 — p2. 2.10d

Thus, the velocity induced by all the vortex filaments is

- [(r—r;(n,t)) xe
Z an Z [( & p)+ 32 + Z) ;Zlelii) | . 2.11
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Another way to represent a ring is by a single circular filament that can change
in size but not shape. This type of filament is useful in simulations of axisymmetric
flows. Since the filament is assumed to remain circular, it can be specified in terms
of its radius and streamwise position. By integrating Eqn. 2.6 along a circle of
radius, R, one can obtain the exact velocity field of a circular filament with a finite
core. This induced velocity is given by the following equations for the radial and

streamwise components, u, and u,:

o (T/R)z 1
JE) = E(1 - - K(1 - , 2.12
u,(F, 2) iV T2 L= 7) (1 —my) (1 —-my) a
and ( p)
_ (T'/R) 1-7 v
uz(f,2) = ~FE(l1—mp)+ =-K(1—-my)], 2.12b
where
F=— 2.13a
e R’ .
z
3= — 2.13b
2 R, 1
§F = -;—2, 2.13c
p=1+7 + 2+ ad?, 2.13d
2F
" = —, 2.13
n=— e
(1-1)
m 1-— , 2.13f
! (1+7)

and E(m) and K(m) are complete elliptic integrals of the first and second kind,

respectively. For definitions of E(m) and K(m), see Eqn. A.7.

The exact solution for a circular filament, Eqn. 2.12, provides a useful means of
checking the accuracy of the multi-segment representation of filaments, Eqn. 2.11.
When computing u, by Eqn. 2.12a, one encounters a numerical singularity at 7 = 0.
This difficulty can be handled by treating that case as an exception and using the
exact solution, u,(0,2) = 0. The details of the derivations of Eqns. 2.9 and 2.12,

along with polynomial approximations of £(m) and K(m), are given in Appendix A.
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2.3 Jet velocity function

The simulation of a jet flow is incomplete without some means to account for
the jet source flow. The filaments only represent the vortex structures formed by
shear layer instabilities. However, by applying the Biot-Savart integral, Eqn. 2.6, to
a semi-infinite, cylindrical vortex sheet of finite thickness (Fig. 2.1), one can derive
an explicit function to define the mean jet flow. This function is referred to as the

“jet velocity function” and takes the following form:

ur(F, 2) = 2;1A;I(ﬁ), 2.14a
and
v (=] (2-p)  _
uz(raz)—27rﬁ{2[ 1—;7,2 +P]
2.14b
..2[ {—Ku—m)+r—ﬂrv—ﬂ}
\/E 117 1 u M, y
where
j=1+7 + ad?, 2.15¢
97
p=Z 2.15b
p
. 4 cos @
I(7) = —_—d, 2.15
() /(; 1—1jcosé ¢
x cos @
T(iz,7) = da. 2.15d
(. 7) /0 (1 — ficosf)y/1 —fjcos8

The variables 7, z, &, 0, 5, and m; were previously defined in Eqn. 2.13. The
parameter = is the circulation per unit length of the cylindrical vortex sheet. The
details of the derivation of Eqn. 2.14 are presented in Appendix A.

The expression for the jet velocity function contains two definite integrals, I(7)
and T'(z,7). It is shown in Appendix A that the definite integral I(77) can be

expressed as elliptic integrals as follows:

I(ﬁ) [K(l—ﬂll)—(l+ﬁ) E(l—ml)]. 2.16

2
Cav1+a
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This expression contains a numerical singularity at n = 0. This difficulty can be
handled by replacing I(7) by T(0,7) for 7 <« 1. The integral T'(i,7), however,

must be evaluated numerically.

An adaptive integration scheme based on the fourth-order Newton-Cotes method
was developed especially for evaluating T'(j,7). The adaptive scheme makes use of
two facts concerning the integrand. First, when & and 57 — 0, the integrand becomes
antisymmetric about n/2, and T(&,%) — 0. Second, as i or 7 — 1, the integrand
approaches infinity for § < 1. Thus, the integration scheme distributes subinter-
vals symmetrically about 7 /2, and the size of the subintervals become smaller and
smaller near the limits of integration as i or 7 — 1. By distributing the subintervals
in this way, one calculates exactly zero when i and 7 = 0, and the computation

cost is kept low while maintaining a specified accuracy even when g or fj — 1.

The fourth-order Newton-Cotes method assumes that the interval of integration
is divided into sets of four equally-sized subintervals. The partial integral Q over

one set of subintervals is found from the following equation:
. h
Qitt = 4—;-[14f,- +64f; 1 +24f; 0 +64f 5+ 14f; 4], 2.17

where h; is the size of the subintervals and f; is the value of the integrand at 4;.

To make the method adaptive, the size of the subintervals are chosen according

to the following relations:

20hy, for+1=0,1,2,...,7;
21hg, for s =8,9,10,11;
hi =3 92hy, for i = 12,13, 14, 15; 218

5 for 1 > 16.

while 8; < 7 /2. The size of the remaining subintervals are specified by requiring
all the subintervals to be symmetric about § = n/2. The size of the smallest

subinterval, hg, is chosen to be
T

hoz'é;a

2.19

where k = [integer part of (3 + 6f + 377)]. This adaptive procedure for choosing

the size and number of subintervals is simple to implement and keeps the relative
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total error of the integration below 0.001% as long as & > 0.01. One can show that
T(a,f) is bounded for all values of z and 77 if and only if & > Osince0 <7 < 2 <1

only for & > 0.

The semi-infinite sheet of vorticity extends from —oo to the origin (Fig. 2.1).
Its axis defines the jet centerline, and the end of the sheet defines the jet exit. The

helical excitation used in the experiments of Lee and

Reynolds (1985b) is modeled by rotating the axis of the vortex cylinder about
the nominal jet centerline. The displacement, Ay, of the jet centerline from the
nominal centerline corresponds to the amplitude of excitation, and A; = A,/R.

The rotation frequency is given by:

fa
_ Je 2.20
fn R,
where
fo= Stal 2.21
D’

The frequency f; is the rate at which filaments are generated at the origin.

The interaction of the vortex sheet with the filaments is assumed to be such that
the sheet influences the motion of the filaments but the filaments do not influence
the sheet. The velocities induced by each filament and by the jet function are
superimposed to determine the trajectory of each filament. The sheet, however,
is constrained to remain cylindrical and is not moved by the filaments since the
cylindrical sheet corresponds to a mean flow whose centerline is determined solely

by the position of a physical nozzle.

2.4 Algorithm

The numerical algorithm is a straightforward implementation of the concepts
discussed in the previous sections. A schematic of tiis algorithm is given in Fig. 2.2.
The excitation and time integration parameters are initialized, and the first filament
is created at the origin. Subsequent filaments are created as specified by the Strouhal

number.
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The circulation of each filament is identical and is determined from circulation
conservation constraints. Assuming the thickness of the cylindrical sheet to be
much smaller than its radius, the vorticity flux (per unit of circumference) within
the sheet through any plane perpendicular to the jet’s axis is given by U2/2. By
the assumption of e perfect fluid, the vorticity convected from the cylindrical sheet
must equal the vorticity convected by the discrete filaments. This conservation
relation can be expressed in terms of I and ~ as

2

& =, 2.22

where I' is the circulation of each ring filament, ~y is the circulation per unit length of
the cylindrical vortex sheet, and At is the time between generation of ring filaments.

By Eqns. 2.21 and 2.22, one obtains

T
= St;—. 2.23
9 ap

At each time step the velocity at each node due to the combined effects of the jet
function and the vortex segments is calculated at the beginning and in the middle of
the time step. The velocities are computed from Eqns. 2.9 and 2.14. These velocities
are used by the second-order, Runge-Kutta method to determine the solution at

the next time step as follows
Y T
x* =x) + —2—u3, 2.24a
)t = x7 4+ 6tu*, 2.24b

where x7 and u/ denote a node’s position and velocity at time ¢;, and 6t is the time
increment between time steps and is typically an order of magnitude smaller than
At. The new position of the cylindrical vortex sheet is determined on the basis of

the excitation amplitude and frequency 2nd the time step.

To keep the algerithm simple and to eliminate the unknown effects of various
nurnerical refinements, the initial calculations constrained the vortex cores to remain

constant i time and did not incorporate any nodal redistribution. When filaments
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are far apart, their interaction is essentially independent of o though their self-
induced velocity is not. The effect of varying o to satisfy Eqn. 2.8 is studied in the

multi-filament shear layer discussed in Sec. 2.5.1.

A program implementing this algorithm was written in Fortran for execution
on the Cray X-MP. By properly structuring the iterative loops in the code, the
vectorization capabilities of the Cray are enabled. A complete listing of this code,
named BIJET, is given in Appendix B. Because of the nature of the mutual induc-
tion process, the cost of the simulation is proportional to the square of the number

of segments.

2.5 Refinements

Several refinements to the numerical scheme described in the earlier sections
were developed and tested. These refinements were motivated by the desire to
understand the discrepancies between experimental results and the computational
results described in the next section. Additionally, these refinements improve the
method in general and give indications of the errors resulting from various assump-

tions regarding the vortex filaments.

Three areas of refinement are described in this section. First, instead of simply
creating ring filaments to represent discrete vortex rings, the formation of the vor-
tex rings is simulated by discretizing the shear layer. Second, non-uniformities in
vorticity distribution within a filament are considered by using multiple filaments
to represent each physical vortex ring. Finally, a numerical scheme based on cu-
bic splines rather than linear segments is developed to improve the accuracy and

dacrease the cost of the computation.

Fach of these refinements was developed and tested as independent problems.
In most cases the algorithms and results were brought to the point where they could
be implemented in the jet simulation code. However, these refinements were not so
implemented because the initial numerical work was adequate to answer most of the

key questions regarding the instability mechanism in bifurcating jets and because
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the objectives of this project dictated that a complementary experiment at high

Reynolds numbers also be planned and executed.

2.5.1 Multi-filament shear layer

The axisymmetric shear layer issuing from a round jet is a continuous distribu-
tion of vorticity. The instability of the shear layer amplifies even very small per-
turbations such that vorticity concentrates in discrete physical vortex rings. Axial
forcing can control this ring formation process. The numerical scheme previously
described approximates this process by periodically introducing a numerical ring
filament a. the jet origin. However, since the formation process is not modeled,
the initial size and location of a ring filament and the size of its core can only be
loosely approximated. To enhance our understanding of the effects of axial and
helical forcing on a ring’s formation, the scheme was modified to simulate shear

layer dynamics.

To model the evolution of a shear layer with a vortex method, one must use many
closely-spaced filaments. When the computational filaments are used to represent
discrete portions of the shear layer rather than discrete vortex rings, the effect of
the axial excitation can no longer be assumed. The numerical scheme must include
some means of simulating the axial forcing. This is achieved by pulsing the mean

flow by sinusoidally varying ~, such that
'7(t) = {1 + Aa C05(27rfat)]’~7; 2.25

where 4 is the time-averaged circulation and A, is the perturbation amplitude.
Correspondingly, the filaments also vary in circulation.

Three different ways of specifying the circulation, I';, of each tilament are used.
All of these methods are based on the circulation matching principle of Eqn. 2.22.
The first method, referred to as quadrature matching, uses the value of v at the

instant filament 1 is generated to calculate I';. Thus,

=2
I =1+ A4, cos(27rfat,~)]2At?2—, 2.26
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where t; is the time when filament ¢ is generated and At is the reciprocal of the
filament formation frequency. This method approximates fé‘“ ~(t) dt by simple

quadrature.

The second method, sntegral matching, evaluates the integral exactly over the

time interval associated with the filament creation, such that

2
I, :{ (1 + %ﬁ) At + ;;‘;[Sin(zﬂfati+l) - Sin(zwfati)]

2.27
A2 :72

The third method, growth matching, is identical to the second method in de-
termining I'; but differs in the temporal assignment of that value. The first two
methods assign circulation I'; to filament ¢ at the instant of its creation. The third
method initially assigns zero circulation and increases the circulation by equal in-
crements over successive time steps. Filament ¢ attains its final value of circulation

when filament 7 + 1 is created.

When simulating axisymmetric shear layers, the speed and accuracy of the
method can be significantly improved. Instead of using filaments made up of nu-
merous segments, one can use circular filaments. The exact solution for the velocity
fleld induced by these filaments can be solved analytically and was presented earlier
in Sec. 2.2. With the circular filaments one only has to keep track of their radius
and streamwise location. The code AXLAYER, listed in Appendix B, is an imple-
mentation of this idea. When modeling a helically-excited shear layer, however, one
can no longer use these circular filaments since the filaments must be allowed to

deform in three dimensions.

The significance of changes in core size due to vortex stretching was also consid-
ered in the simulations of an axisymimetric jet. In one case the core sizes remained
constant in time. In the other case they varied in time according to Eqn. 2.8. These

changes in core sizes due to vortex stretching do not occur in two-dimensional flows.
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2.5.2 Multi-filament vortex ring

It is not clear how a vortex ring forms when the shear layer is perturbed helically.
One might expect that the initial ring formation results in azimuthal variations in
the size of the vortex core. However, those asymmetries might be quickly smoothed
out by azimuthal flow within the vortex. This smoothing process has been proposed

by Moore and Saffman (1972).

If one were to use only a single filament with a spatial variation in core size, linear
impulse would not be conserved. Therefore, to model a vortex ring with a spatially
varying core size, one must modify Eqn. 2.6 to allow for flow within a filament or
use multiple filaments. In this work, multiple filaments having azimuthally uniform
cores are combined. The relative orientations of these filaments define the shape

and core characteristics of the vortex ring.

This multiple-filament approach was used to simulate the evolution of non-
uniform-core vortices. In one case, the evolution of a pair of rings initially positioned
side by side is considered. In the other case, a pair of eccentric rings are studied.
This configuration is similar to the arrangement of adjacent rings in the near-field

region of a bifurcating jet.

2.5.3 Spline approximation

When representing a single arbitrary vortex filament by a set of linear segments,
one makes several approximations. The linear segments can only approximately rep-
resent the shape of the filament. Additionally, by using linear segments, one makes
an error in calculating the local induction of the filament. Local induction refers to
the velocity induced at a point on a filament as a result of ihe filament’s curvature
near that point. From Eqn. 2.9, it is evident that every pair of adjacent linear
segments induces no velocity on the node between them. Errors in representing the
shape of the filament and in estimating the local induction decrease as the number

of segments becomes large.

These approximations are improved by using a periodic cubic spline instead of

linear segments. A set of points on the filament defines the spline. Assuming unity
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intervals, one obtains the system of equations
1w "o, el
-é[fi__1+4f‘ + 1) = %1 = 2% + %44, 2.28

where x; denotes the spatial position of node i, f!' is the second derivative with
respect to the parameter £ of the spline function, and ¢ =1, 2, ..., N (number
of nodes per filament). The spline in turn defines the local derivative arj/af' in

Eqn. 2.6 to be f’ where f’ is given by
/ Loon "
fi =41 — % — g[fi+1 + 2f;}. 2.29

This estimate of the local derivative is used with the trapezoid rule to solve Eqn. 2.6.

The implementation of this method is both straight forward and convenient.
The technique of LDU decomposition can be used to solve Eqn. 2.28, and if N
remains constant, the factorization needs to be performed only once. The method’s
convenience becomes apparent when solving Eqn. 2.6 for a system of filaments.
Since the trapezoid rule is used, Eqn. 2.6 can be simplified to a single summation
over all the nodes. This simplifies the bookkeeping since one does not need to keep

track of neighboring nodes as in the multi-segment scheme (see Eqn. 2.9).

For the same number of nodes, the spline approach does a better job of approxi-
mating the shape of an arbitrary filament than does the multi-segment scheme. The
spline method also includes the effect of the local induction rather than neglecting
it. The tradeoff is that the velocity induced by the spline must be calculated by
quadrature, whereas the induced velocity of linear segments is specified exactly by
Eqn. 2.9. This tradeoﬁ? is not a penalty since quadrature is computationally cheaper
than evaluating Eqn. 2.9. An example of the spline approach is provided by the
code SIVSPLINE, which calculates the self-induced velocity of a ring filament. This
code is included with the other program listings in Appendix B.
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Chapter 3
NUMERICAL RESULTS

The computational portion of this work involved development of a new discrete-
vortex code, simulations of vortex interactions and bifurcating jets, and refinements
of the numerical scheme. The principles underlying this code were presented in the
previous chapter. Validation tests were performed to test the accuracy of differ-
ent portions of the program, and the results of these tests are given in Section
3.1. To test the code as a whole, some simple vortex interactions were simulated.
These interactions, described in Section 3.2, involved vortex pairing, collision, and

separation, and discrete axisymmetric shear layers.

The main results of the computational work are detailed in the remainder of
this chapter. Section 3.2 considers the momentum of a finite train of rings in an
attempt to estimate ring spacing and bifurcation angle in bifurcating jets. Section
3.4 presents the simulation of the bifurcating jet at different excitation amplitudes
and frequencies. The other secticns all deal with refinements to the basic numerical
approach and method. In Section 3.5, an axially-excited shear layer is modeled with
discrete vortex rings. In Section 3.6, multiple computational filaments are used to
represent vortex rings with non-uniform cores. Finally, Section 3.7 demonstrates
the significant improvements of the spline-based scheme over the standard linear-

interpolation approach.

All the simulations in this study were performed on the computer facilities at
NASA Ames Research Center. The code was developed on a VAX 11/780, and the
simulations were carried out on the Cray X-MP. Various graphics packages were

used to provide plots, slides, and movies of the results.

3.1 Validation of code

Since the entire program consists of entirely new code, some basic validation tests

were performed prior to simulating jet flows. These tests consisted of comparisons
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between computed and theoretical vortex ring velocity fields. These comparisons
provide a check of the code’s main part, the subroutine that calculates induced
velocities. Additional tests concerned numerical parameters. Different numbers of
nodes were used to represent each vortex filament, and different time intervals were

considered.

Unlike a point vortex, a vortex ring has a self-induced velocity. This velocity
depends on the ratio of the core radius, o, to the ring radius, R, and on the vorticity
distribution within the core. For /R < 1, the self-induced velc :ity, ug, of a

filament with a finite, constant-vorticity core is (Lamb 1932)

r 8R 1
U = —— 1n(—>--]- 3.1
* 7T 4nR [ o 4
For a ring with a Gaussian distribution of vorticity, the corresponding expression is
(Saffman 1970)

us = %E[ln(%g) _ 0.558]. 3.2

One can also evaluate the ring speed by evaluating Eqn. 2.12 at (7, 2) = (1,0).
The constant a in this expression is set to 0.413 to match the ring speed of a
Gaussian ring as specified by Eqn. 3.2. For 06/R <« 1, Eqns. 2.12 and 3.2 predict
ring speeds that are identical to three significant figures. The advantage of using
Fan. 2.12 is that the actual vorticity distribution within the core is identical to the

computational filaments composed of multiple segments.

Figure 3.1 compares the self-induced velocity of a ring filament having varying
number of linear segments with the theoretical self-induced velocity of a circular fil-
ament. Since adjacent nodes define a segment on the periodic filament, the number
of nodes and segments are identical. The calculated self-induced velocity asymptot-
icaily approaches the theoretical velocity as the number of segments is increased.
Ideally, one would use a very large number of segments for the sake of accuracy.
However, because the cost of the calculation goes like the square of the number
of segments, a compromise must be made. For the bifurcating jet simulations, 32
nodes define each ring filament. With 32 nodes, the calculated self-induced velocity

is 21.5% lower than the theoretical value.
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Another test to determine an adequate number of nodes is to compare the ve-
locity fields of a multi-segment ring with that of a circular filament. The velocity
field of the circular filament is given by Eqn. 2.12 and is presented in Fig. 3.2. The
velocity field of the multi-segment ring is very similar. The velocity field within
and around the filament core of a circular filament is presented in Fig. 3.3. The
fluid within the core appears to be in almost solid-body rotation. The velocity at
the core’s center corresponds to the self-induced ring velocity. The peak velocity
essentially defines the edge of the core. From this plot it is evident that the core
parameter & provides only a nominal value of the core radius. In this case & = 0.1

while the actual core radius is 0.04.

Along with the calculation of filament velocities, the velocity field of the jet
function was also tested. A cylindrical vortex sheet of infinite length and infinitesi-
mal thickness has uniform axial velocity within the sheet and zero velocity outside
the sheet. Thus, one would expect the semi-infinite sheet depicted in Fig. 2.1 to
have similar characteristics for z < 0. The velocity profiles in Fig. 3.4 substantiate
this expectation. Since the semi-infinite sheet has finite thickness, 20, there is also
a velocity gradient within the sheet (Fig. 3.5). In Fig. 3.5, the nominal radius of

the cylindrical sheet equals 1.

The flow from a semi-infinite cylindrical vortex sheet (Fig. 3.6) is similar to
that of an inviscid jet issuing from a hole in a wall. However, because of the finite
thickness of the sheet, there is some flow through the “wall” defined by z = 0
and 7 > 1. The amount of flow through the wall decreases as the sheet thickness is
decreased. The velocity fields of vortex sheets of differing thicknesses are essentially
identical except in the region of 2 =0 and ¥ = 1 (Fig. 3.7). If the vortex sheet were
defined to have zero thickness, there would be zero through-flow, but there would

also be a singularity at 2 =0 and ¥ = 1.

3.2 Simulation of simple vortex interactions

The previous section described checks of different components and parameters

of the code. The simple vortex interactions considered in this section provide a
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check of the code as a whole. All but the last case involve the interaction of only
two vortex rings. The simulation of these interactions are documented in the 16
mm, computer-generated film entitled “The Propagation and Interaction of Inviscid

Vortex Rings.” Copies of this film are also available on VHS video tape.

In axisymmetric shear flows, vortex rings are often observed to combine to form
larger rings through a pairing process. One ring accelerates into the ring imme-
diately downstream from it and passes through it prior to merging with it. As
the rings near each other, the downstream ring increases in radius and slows down
while the upstream one decreases in radius and moves faster. In certain cases of
two impulsively started rings, the rings pass through each other a few times prior

to combining (Oshima & Kuwahara 1984). This is often referred to as leapfrogging.

This leapfrogging process is the first vortex interaction simulated. Two identi-
cal, concentric rings with thin cores are initially positioned one radius apart and
then allowed to propagate and interact. The rings leapfrog through each other

indefinitely, and their relative motion is exactly periodic.

The second test case involves two identical, concentric rings colliding with each
other. As they near each other, their velocities decrease. When they are very close,
they slow down tremendously while rapidly expanding in size. These features are
similar to those observed in the experiments of Oshima (1978). One could also
relate this simulation to a ring impinging on a wall. In this case the two rings

would represent the physical ring and its image.

The third case focuses on two identical, concentric rings that move away from
each other. This could represent a vortex ring moving away from a wall. The rings
initially shrink in size. Eventually, they move far enough apart that their mutually
induced velocities are small. At that point their propagation is essentially due only
to their self-induced velocities.

Finally, an unforced, axisymmetric shear layer is modeled by discrete vortex
filaments. Filaments are created periodically at the origin of the system such that

they are initially close to each other. The nominal core radius, &, is 0.1. No regular

nor random perturbations are introduced, and the jet function is not used. The
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growth and development of this discrete shear layer is presented in Fig. 3.8. The
small circular marker shows the origin of the system. Several diameters downstream
from the origin, the filaments bunch together to form, large, distinct structures.
This case provided a guide for choosing an adequately small time step. When the
time step is too large, a numerical instability results in the azimuthal variations
scen on certain rings in Fig. 3.9. These wiggles are completely removed by simply
reducing the time step, 6¢, from 0.1 to 0.025, where 6§ = 6tT'/R?. The value of 6

used in the bifurcating jet simulations (Sec. 3.4) was typically less than 0.006.

3.3 Analysis of a finite train of rings

In this section the velocity field of a finite train of coaxial, equally-spaced vortex
rings is considered in an attempt to gain insights related to the ring spacing and
bifurcation angle of bifurcating jets. The positions of the rings are fixed in time, and
all the analyses focus on the ring in the middle of the train of rings. The primary
parameter, §, in this analysis is the distance between rings normalized by the radius
of the rings. The rings are represented by circular filaments whose velocity fields are
specified by Eqn. 2.12. The average fiow quantities are obtained by trapezoid-rule
integration over the regiczn, - /2 < z < 5/2.

The streamwise velocity induced by all the rings on the central ring is defined

as the convection velocity i, where i, = u,R/I. From the definition of St,

(T/s)
which can be simplified to
St == 2ﬁC‘ 3.4

The dependence of @, on § for three different values of & is plotted in Fig. 3.10.
The number of vortex rings, N,, used in this calculation is 41. For § > 1, i,

asymptotically approaches the self-induced velocity of a single ring.

One can use calculations of @, to estimate the relative spacing of rings in the

nifurcating jet. In a bifurcating jet, the vortex passing frequency, f]’ of the large
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rings upstream of the bifurcation region is twice the frequency, fp, of the rings on
the jet’s two branches. Thus, the ratio, R,, of the distance between rings can be

estimated as follows:

u('_” |°_|

Rs

~ gl 3.5
i,

For a given §;, this equation must be solved iteratively to determine the correct

value of §;. For 3; = 2.0, R, decreases from 1.71 to 1.60 as & increases from 0.10 to

0.50. For & = 0.1, R, increases from 1.64 to 1.78 as §; increases from 1.60 to 2.40,

and for & = 0.3, R, increases from 1.57 to 1.71 as §; increases from 1.60 to 2.40.

Thus, for a wide range of 5; and 7, R, falls in the narrow range of 1.6 to 1.7. This

important result will be discussed further in Section 6.5.

The effect of the number of rings and the ring spacing on the instantaneous and
mean velocity profiles is presented in Figs. 3.11 and 3.12. The shapes of the profiles
are similar, but the velocity magnitudes are lower by a few percent for vV, = §
compared to those for N, = 41. For a given value of Ny, the velocity profiles are

essentially self-similar when plotted in terms of us/T.

If one assumes that the branches of the bifurcating jet behave as two independent
jets whose momentum fluxes approximately equal those of a finite train of rings
with the same ring spacing, one can attempt to obtain a bifurcation angle from
a momentum balance. The axial momentum flux of a single branch is given by
<[f puf dA > cos(3/2), where p is the fluid’s density, u; is the velocity along the
branch, 3/2 is the angle between the jet’s centerline and the axis of the branch, and
< > denotes a spatial average in the direction of the branch axis. For a constant-

density bifurcating jet, the resulting equation for the bifurcation angle, 3, is

< uldA >
B = 2cos ! ( ff ] ) ) 3.6

2< [fuldA >

where u; is the axial velocity of the jet upstream of the bifurcation region. The
calculated axial momentum flux, F, corresponding to different values of § and & are

presented in Fig. 3.13, where F =< ff uldA > /F2 and u is the velocity component
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parallel to the axis of the train of rings. Using the jet exit conditions and Eqn. 2.23

and ignoring the increase in momentum flux due to axial forcing, one obtains

< // u?dA >=nSt’r2, 3.7
By Eqns. 3.4, 3.6, and 3.7,
2742(o,5;)
— 2cos™] c\93; 3
B cos ( F(5.5,) ) 8

For all values of  and 8; considered, the argument of cos™! in Eqn. 3.8 is greater
than unity. This is true even if the numerator in Eqn. 3.8 is replaced by F(7,5;).
Thus, while the analysis presented in this section can provide a useful estimate of
relative ring spacings in a bifurcating jet, it is inadequate to provide any insight
regarding the bifurcation angle. In spite of this inadequacy, the momentum analysis
has been included here for the sake of completeness and as additional justification

for the more complex approach presented in the next section.

3.4 Simulation of bifurcating jet

The bifurcating jet simulations examine the effects of physical parameters as
well as modifications of the numerical model. The physical parameters are the
axial Strouhal number, St,, and the helical excitation amplitude, A;. To consider
the effects of the cylindrical vortex sheet, some simulations are run without the
sheet. Additionally, both helical and flapping excitations are considered. The helical
excitation is achieved by moving the cylindrical sheet in a circular orbit of radius
Aj about the nominal centerline of the jet. The flapping excitation is achieved
by moving the sheet sinusoidally back and forth along a line passing through the

nominal jet center. The half-length of that line is also referred to as Ap.

The code BIJET, listed in Appendix B, was used to simulate the bifurcating
jet. This code includes the jet function to model the source flow and discrete

vortex filaments to represent the vortex rings. Each vortex filament is composed
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of 32 piecewise. linear segments of vorticity. The nominal core radius, , of each
ring i3 0.1, This value was chosen based on an order-of-magnitude estimate of
the core sizes of the physical vortex rings. Variations of core size in the range
of 0.03-0.10 have little or no effect on the spreading angle of the bifurcating jet.
The nominal thickness of the cylindrical vortex sheet is 0.2 times the ring radius.
The non-dimensional time step, 8¢, is typically less than 0.006. Unless otherwise
specified, the cylindrical sheet is included, and a helical mode of excitation is used.
o simulate the bifurcating jet, the excitation frequency ratio, Rf, is exactly two in
ali cases. Twenty different cases were simulated, and the parameters corresponding
to these cases are tabulated in Appendix C.

The initial positions of the filaments are staggered to correspond to the excita-
‘ionn. Ore might wonder whether the staggering is sufficient to produce a bifurcating
train of rings. or whether the source flow is required. Figure 3.14 compares two sim-
'ations in which one has no source flow. Both vortex trains exhibit a bifurcation
pattern, but the one with the source flow has a bifurcation angle of 27° in contrast
te an angle of 16° for the other case. The bifurcation angle is determined by mea-
suring the angle between the centerlines of the two trains of rings. Each of the cases

noted in Table C.1 include the source flow.

It is important to note that the relative phase of the axial excitation is more
important than the exact type of transverse forcing. Whether the transverse forcing
ernplovs a helical or flapping motion, the bifurcating jet is produced. However, the
relative phase between filament generation and helical excitation determines the
diametrical prane in which the jet bifurcates. If a flapping excitation is adopted and
if each new filament is generated when the cylindrical sheet has no displacement,
the jot behaves essertially as a natural jet.

i'niike the physical flow, large levels of excitation are required to produce bifur-
cating jets in the simnlation. Figure 3.15 compares two jets at the same Strouhal
ramber (St, - 6.3) and at different excitation levels (A, = 0.1 and 0.5). At
A, 0.1, the rings are eccentric, but the jet does not bifurcate at all. The tangle

of voriex filaments is due to the interaction of two eccentric rings. At Ay = 0.5, the
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jet splits into two distinct jets. A similar comparison at St, = 0.35 and A, = 0.3
and 0.5 is given in Fig. 2.16. The jet at Ay = 0.3 is presented one axial excitation
period later than the jet at 4y, = 0.5. The jets appear very similar, and both exhibit
a bifurcation angle of 34°. The displacement of newly-created filaments from the
jet’s nominal center, marked by the small sphere, indicates the difference in Aj.
Apparently, one can not increase the bifurcation angle by increasing 4; beyond 0.3
when St, = 0.35.

The jet response to different Strouhal numbers (0.25 < St; < 0.50) and the
same excitat’on amplitude (A = 0.5) was also considered. Figure 3.17 shows the
evolution of a bifurcating jet at S¢g = 0.3 over several excitation periods. Similar
results are presented for Stgs = 0.40 in Fig. 3.18. End views of these two cases are
shown in Fig. 3.19. The results in Figs. 3.17-3.19 demonstrate that the simulation
captures the bifurcating jet’s dominant features, the formation of two distinct jets
and the asymmetric spreading pattern. The simulations also predict an increase
of the bifurcation angle with St;. The maximum bifurcation angle is obtained at
St, = 0.42 (Fig. 3.20). The difference between the evolution of the rings farthest
downstream and the development of those upstream is due to the fact that the first
rings generated have no rings downstream of them to affect their trajectories. This

start-up conditicn was also seer in the experiments of Lee & Reynolds (1985b).

Figure 3.21 presents the jet bifurcation angle as a function of Strouhal number.
Trne dashed lines in Fig. 3.21 denote a range in which bifurcating jets occur. At
Strouhal numbers below this range, the jets appear as slightly perturbed round
jets. Above this range the jets exhibit spreading angles larger than those of natural
jets, but they do not have two distinct branches as the bifurcating jets within the
specified range. Within this range the bifurcation angle rises sharply with St;. The
implications of this behavior are examined in the comparison with experiments in

~ic. 6.5 and in the discussion of mechanisms in Sec. 6.6.

The cause for this dependence of bifurcation angle on St; can be understood
Ly considering the temporal onset of bifurcation at different Stq (Fig. 3.22). The

Stronhal number determines the spacing of the ring filaments. The filaments are
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relatively far apart at St, - 0.3. At St, — 0.42, the filaments are so close that they
barely avoid colliding with each other as they separate along different trajectories.
At St, - 0.43, the rings are too close to each other to be able to escape getting

entangled with each other, and thus the jet does not bifurcate.

The remaining sections of this chapter present the results of various refinements
to the numerical model and method. Although each refinement was tested on some
situple problems, these refinements have not yet been incorporated in the bifurcating

jet code.

3.5 Roll-up of excited shear layer

The axial excitation in the bifurcating jet simulation presented in the previous
~ecvion is modeled by periodically creating ring filaments at the jet exit. This
rmodel 15 based on the fact that sinusoidally forcing an axisymmetric shear layer
will produce regularly-spaced vortex rings. However, the actual formation of vortex
rings is not iastantaneous, and this simple model has no means to account for the
effects of the axial and helical excitations on the formation process. The simulations
described in this section allow us to examine the effect of axial forcing on the initial
roll-up of an axisymmetric shear layer into discrete vortex rings.

In the simulations described here, the shear layer is discretized into a single-layer
of closely-spaced circular filaments. The filaments are generated at the jet exit at
regular intervals. As many as twenty filaments are generated per axial excitation
period. The axial excitation is modeled by sinusoidally varying the circulation per
anit length, ~, of the cylindrical vortex sheet. This corresponds to periodically
varying the mean flow. The bunching up of circular filaments into a distinct group
corresponds to the formation of a discrete vortex ring.

The objective of this particular simulation was not only to consider the effect
of axial forcing on ring formation but also to investigate different approaches to
matching the vorticity flux of the jet function to that of the filaments. The three

approaches (quadrature, integral, and growth matching) described in Sec. 2.5.1 have
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been implemented, and their corresponding results are compared in this section. In
addition, the influence of the source flow generated by the jet function and the

importance of using image filaments are also considered.

Effect of source flow. The simulated initial roll-up of the unforced axisymmetric
shear layer is shown with and without the source flow in Fig. 3.23. The circular
marker shows the center of the jet exit. Note that the source flow causes the initial
trajectory of the filaments to be parallel to the jet axis, whereas without the source
flow the jet initially contracts. Hence, one could think of the source flow as a means
of satisfying the Kutta condition at the jet exit. It is important to realize that the
value of v was not chosen to produce this parallel flow but was determined simply

on the basis of a vorticity conservation constraint, Eqn. 2.22.

General effect of forcing. The initial evolution of an unforced axisymmetric
shear layer is compared with that of a forced layer in Fig. 3.24. The symbols denote
the positions of the filaments’ cores. In the unforced case, the shear layer has rolled
up into a single large vortex structure composed of many filaments. In the excited
case, the filaments are grouped into two distinct groups. The existence of two
groups corresponds to the two periods of forcing that have been completed by this
point in the simulation. In these and the following cases, the filaments are initially
generated one core radius, o, downstream of the jet exit. Since the flow is assumed
to remain axisymmetric, only the radial and streamwise position of each filament’s

core is necessary to describe the position of the entire filament.

Effect of voarticity-matching schemes. Since in the forced case ~ varies in time,
the vortex filaments do not have the same circulation, I';. Three different methods
for calculating T'; were described in Sec. 2.5.1. The evolution of the axially-excited
shear layer as calculated by each method is presented in Fig. 3.25. Image filaments
are included, and the core sizes of all filaments are constant. In each case the shear
layer forms discrete bunches of vortex filaments as a result of the forcing. These
bunches correspond to the vortex structures seen in physical flows. The methods
differ noticeably in their prediction of the trajectories of the filaments. However,

the init‘al necking down of the jet and the positions of the centroids of the groups
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of filaments are very similar. Doubling the number of filaments created during each
excitation period produces no significant change in the initial necking down of the

jet nor in the locations of the vorticity centroids (Fig. 3.26).

Comparing Figs. 3.24b and 3.25a, one can see that the presence of image fila-
ments increases the initial necking down of the jet. This large initial contraction
of jet width (Fig. 3.25) is also seen in experiments with strong axial-forcing (Lee
& Reynolds 1985b). Nevertheless, it is not clear that it is better to inciude image
filaments since their inclusion would violate the Kutta condition in the unforced

case,

Pairing of vortez rings. To check whether the simulation can capture the pairing
of vortex rings, the evolution of the axially-forced jet is presented at the end of two,
three, and four excitation periods in Fig. 3.27. One group of filaments is formed
each excitation period. For example, at the end of two excitation periods, two
groups are seen in Fig. 3.27a. However, the number of groups present at the end of
each period depends on whether a pairing event has taken place. Pairing reduces
the number of groups by one. Thus, existence of only two groups at the end of
three excitation periods indicates that two groups have combined into one. Pairing
also doubles the distance between filament groups. This increase in length scale

corresponds to the subharmonic of the forcing frequency and is seen in Fig. 3.27c.

Effect of forcing amplitude. The effect of excitation amplitudes of 5% and 20%
are compared in Fig. 3.28. In each case the growth matching scheme is used and the
time corresponds to the end of two excitation periods. Forcing at A; = 5% only
produces one distinct group of filaments in contrast to the two groups produced
at A, = 20% (see also Fig. 3.27a). Thus, forcing at A, = 5% is not sufficient to
control the formation of vortices from the shear layer. However, experiments in the
planar mixing !ayer show that forcing levels even below 1% are adequate to exercise
control over the vortex formation frequency (Ho & Huang 1982). This discrepancy
between computations and experiments suggests that the multi-filament simulation

underestimates the amplification of perturbations in the shear layer.
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Effect of temporal, core-size variations. In all the simulations previously de-
scribed, the core size of each filament is constant. However, in an inviscid flow
the core size should vary with the filament radius as specified in Eqn. 2.8. The
effect of keeping the core size constant is not too significant in the bifurcating jet
simulation since the filaments are far apart. In the shear layer simulations, how-
ever, temporal variations in core size could be important. Figure 3.29 compares
the pathlines of the first filament in the forced-layer simulations for the two cases
of fixed and temporally-varying core size. The divergence of the two trajectories is
6.5% of the jet radius at the end of one excitation period. While ore might expect
that this difference in the trajectory of a single filament would increase with time,
't is not clear whether the global features of the flow would also exhibit significant

differences after a long time.

3.6 Rings with non-uniform cores

Mechanism cf jormation. Helical as well as axial perturbations affect the evolu-
‘ion of a round jet. Thinking in terms of the discrete-filament model of the shear
layer, one could imagine that a helical perturbation could produce a ring with az-
imuthal variations in core size. Figures 3.30 and 3.31 show different views of a
helically-excited jet at different phases of the excitation. The small circular marker
shows the nominal center of the jet. If axial forcing with fo/f = 2 were included,

the filaments shown would form two vortex rings with non-uniform cores.

Interaction of non-uniform rings. To investigate the interaction of a pair of
rings with azimuthal core variations, simulations were made with pairs of rings,
each composed of nine filaments. Each filament has a constant core radius, &, equal
to 0.1. Eight filaments are equally distributed about one central filament such that
their distance, 6, from the central filament varies linearly according to the following
relation:

L o < .
6(w)u{60+"A’ if 0 <y <m, 3.9

b+ (2 - 8)A, if7 <y <2m,
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where ¢ is the azimuthal position in radians on the central filament and A is the

magnitude of the core variation.

The first simulation invoives two rings side by side (Fig. 3.32). In case (a), the
fattest sections of the rings are adjacent to each other, but in case (b), the thinnest
sections are closest. In both cases, §o/R = 0.1 and A/R = 0.2. As time progresses,
the core variations are smoothed out and then reversc in orientation. The spiral

shape of the filaments indicates the presence of azimuthal flow within the rings.

The second simulation involves the interaction of two eccentric rings with uni-
form and non-uniform cores (Fig. 3.33). The initial positions of these rings approx-
imate the relative positions of two adjacent rings upstream of the bifurcation region
in a bifurcating jet. If the largest sections of the rings are initially closest to each
other, the tilting of the rings does not appear to increase over that in the case of
wiorm cores. However, if the smallest sections are initially nearest to each other,

the tilting effect is significantly enhanced over that for the uniform rings.

These results suggest that azimuthal variations of core size could affect the
angle at which a bifurcating jet spreads. The fact that these core variations were
not included in the bifurcating jet simulation of Sec. 3.4 might partially explain
why the computations required larger excitation amplitudes and did not predict
spreading angles as large as those seen in experiments (compare Figs. 1.3 and 3.21).
Whether the core variations would be smootled out (see Fig. 3.22) before they could
affect ring interactions in the bifurcating jet is not known. A jet simulation that
models the formation of the vortex rings and uses multiple filaments to represent

each ring would be required to answer this question.

3.7 Improvement by spline approximation

The refinements presented in the previous two sections concerned the use of
filaments to model the jet. The refinement discussed here is an improvement in the
numerical description of the filaments. Instead of using piece-wise linear segments

to represent a filament, a periodic, cubic spline is used. To compare the accuracy of
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these two representations. their predictions of ring speed are compared with theory.
Figure 3.34 shows the convergence of the calculated ring speed as a function of
number of nodes for both filament representations. The spline scheme achieves the

same accuracy as the linear scheme with just half the number of nodes.

Not only is the spline scheme more accurate, it also has several practical advan-
tages over the linear scheme. First, the spline scheme enables the programmer to
construct much longer vectors in the time-intensive, iterative portions of the code.
The longest vector with the linear scheme is the number of nodes per filament, but
with the spline scheme it is the total number of nodes in the simulation. This is an
advantage since supercomputers generally operate more efficiently with long vec-
tors. The ideal vector length depends on the memory architecture of the particular
computer. Second, the spline scheme allows one to perform nodal redistribution

more accurately and edficiently.

Third and most importantly, the spline scheme is almost an order of magnitude
faster than the linear scheme. Since the cost of these calculations are proportiona!
to the square of the number of nodes and since the spline scheme requires half the
number of nodes for the same accuracy, the spline scheme is faster by a factor of
four. Since the number of operation counts for the spline scheme is half that of the
linear scheme, speed increases by an additional factor of two. These two factors
correspond to an eight-fold increase in speed. The additional cost savings due to

longer vectors will differ with the type of computer.

One could consider the spline scheme to be an improvement on the basis of a
purely physical argument. Depicting a vortex filament as a collection of connected
linear segments results in non-physical cusps at each node. But with the spline
scheme, one can specify the numerical filament to be smooth as is the physical
filament. Thus, the spline representation corresponds to a more physically-realistic

structure.
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3.8 Suminary

This chapter has presented the results of vortex-filament simulations of simple
ring interactions and bifurcating jets and of refinements of the numerical model and
inethod. The most significant results pertain to the bifurcating jet. The simulations
demonstrate that the bifurcation of round jets is the consequence of the mutual
induction of eccentric rings and that the bifurcation angle increases with Strouhal
number. Another important result is that the numerical representation of a filament
by a periodic, cubic spline rather than by multiple straight segments provides an

order of magnitude decrease in computational cost for a given accuracy.

There are two major discrepancies between this simulation of the bifurcating
jet and the experiment of Lee & Reynolds (1985b). First, to achieve large spread-
ing angles, the simulation requires a helical excitation amplitude about ten times
larger than that of the experiment. Second, the maximum bifurcation angle of the
simulation was around 50° (at St; = 0.42) compared to 80° (at St, = 0.6) for
the experiment. These discrepancies can be attributed to the simulation’s coarse
spatial resolution, underestimate of self-induced velocity, and inability to model the

initial amplification of disturbances in the shear layer.
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Chapter 4
EXPERIMENTAL APPARATUS AND APPROACH

The objective of the experimental portion of this research is to test the concept of
bifurcation at high Reynolds numbers and to study the effects of various excitation
parameters. Previous experimental work (Lee & Reynolds 1985b) and the com-
putational results described in the previous chapter demonstrate that dual-mode
excitation can cause a round jet to bifurcate into two distinct jets. Those results
also point to an inviscid vortex interaction process as the primary mechanism caus-
ing bifurcation. Thus, one would expect to be able to apply the concept successfully

to jets at Reynolds numbers higher than those of the previous experiment.

However, the implementation of dual-mode forcing in high speed gaseous jets
does pose several previously unresolved questions. What is the best way to intro-
duce the dual-mode excitation at the high forcing frequencies required by high Re
flows? Will the low amplification rates associated with forcing at frequencies much
lower than the shear layer’s initially most-amplified frequency inhibit the bifurca-
tion process? How does the required excitation amplitude increase with the jet

Reynolds number?

To address these questions, a low-speed apparatus was designed and built. Air
served as the workine flnid Several differert techniques for producing the axial
and helical excitation were considered. The insights gained from this preliminary
investigation provided guidance for the design and fabrication of the high-speed

version of the bifurcating jet apparatus.

Since the primary objectives of this study concern global features of the jet, flow
visualization experiments were emphasized. With flow visualization, one can read-
ily identify different flow structures, uniquely capture the instantaneous behavior
of the entire flow, effectively determine the jet response to variations in excitation
parameters, and quickly test system modifications. The velocity and pressure mea-
surements quantify the initial conditions of the jet and the amplitude and phase of

the excitation.
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4.1 Low-speed jet apparatus

A schematic of the low-speed jet apparatus is shown in Fig. 4.1. Air is intro-
ditced into the outer annular section of the plenum through two 3.8-cm-diameter
pipes. This outer section is bounded by an 8” schedule-80 PVC pipe. The air
biceds throngh a 46-cm-long, 9.7-cm-diameter, porous, bronze cylinder into the
inner evlindrical section of the plenum.

This eylinder, along with acoustic baflles in the outer annular section, effectively
colates the inner section from all but the lowest frequency upstream noise sources.
“ach haflle consists of a ring-like Plexiglas insert that fits between the PVC pipe

o bronze cylinder. The inserts are lined on both flat surfaces with open-
~arn for acoustic damping. Air flows through the bafiles through several large
o= in the inserts. This plenum design was used with good success by Kerschen
and Johnston (1978), and its acoustic properties are documented by Roberts and
Johuston (1974).

The air is supplied by an EG&G Rotron, 1/4-1IP regenerative blower (model
101), which is connected to the plenum by a 6-m, 3.8-cm-diameter, flexible PVC
hose.  The air is filtered at the blower inlet. This blower provides a portable,
independent flow source that is ideally matched to the pressure and flow rate re-
quirements of the experiment. A series of gate valves regulates the amount of flow

and allows one to bleed some of the air for secondary uses.

A circular duct, made of 4” schedule 80 PVC pipe, directs the fluid from the
plenum into the nozzle. The inner diameter of this duct is also 9.7 cin. For additional
flow conditioning, a honeycomb disk is mounted inside this duct. A 1-mm-diameter
pressure tap in the pipe wall provides access for monitoring plenum pressure.

The nozzle was made by cutting off the bottom and threaded ends of a clear,
two-liter, plastic soda bottle. The nozzle is cemented onto a Plexiglas coupling
which is rigidly mounted to the circular duct. This simple nozzle has significant

advantaces in addition to its low cost. Its clear walls allow visual access inside
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the nozzle, and its light weight makes it possible to excite the jet by physically

oscillating the nozzle. This type of excitation was anticipated but was not required.

Several different schemes for producing the heiical and axial excitations were
explored. These schemes involved mechanical, acoustic, and fluidic devices. Each
scheme was tested, and one was chosen on the basis of success in producing bifurca-
tion, ease of implementation, and flexibility in varying excitation parameters. The
final version of the low-speed apparatus, shown in Fig. 4.1, incorporates an acoustic
excitation system. A 60-watt, Pioneer, 9-cm, full-range speaker is used to produce
the axial excitation. Four 120-watt, 15-cm, Morel woofers are flush mounted in a
70-cm by 70-cm particle board panel which is also flush with the nozzle exit. The
woofers are positioned 90° apart, and their centers are located 11 cm from the jet

centerline.

The Plexiglas coupling, shown in Fig. 4.1, also serves as a passage for smoke flow.
Smoke enters through four ports into an annular chamber and is injected tangential
to the core flow through a narrow annular slot. By injecting the smoke into the
nozzle boundary layer, one clearly marks the shear layer and vortical structures of

the jet.

The jet apparatus is oriented vertically by a rigid steel frame. The jet exit sits
one meter above the floor. In all experiments, the jet is situated in a large room

(at least 10m x 20m x 7m) and positioned at least one meter from the nearest wall.

4.2 High-speed jet apparatus

The low-speed apparatus was successfully used to produce bifurcating jets at
moderate Reynolds numbers. These results are detailed in the next chapter. This
success provided the motivation and guidance for designing another apparatus for
studying high-speed, high-Reynolds number air jets. A schematic of this apparatus

is shown in Fig. 4.2.
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The plenum design is identical to the low-speed apparatus except for the method
of bringing air into the plenum. Instead of two small-diameter pipes, one 9.7-cm-
diameter pipe is used. An 8° (included angle) diffuser connects this large diameter
pipe to the smaller diameter supply hose. The air is supplied by a 1-1/2-HP, EG&G
Rotron regenerative blower (model 454). The air is filtered at the blower inlet.
i'wo gate valves in parallel regulate the flow to the jet apparatus. The valves
were arranged to minimize system resonances. The blower is connected to the jet

apparatus by a 6-m, 3.8-cm-diameter, flexible PVC hose.

A two-piece, 2-cm-diameter, anodized aluminum nozzle was designed and ma-
chined for this high-speed jet apparatus. The nozzle profile is specified by a fifth-
order polynomial with zero slope and curvature at inlet and exit. Tan-atichat
(1980) demonstrated that this profile, when compared to a matched-cubic profile,
has smaller streamwise velocity overshoot and smaller radially inward velocity at
the jet exit. A numerically-controlled lathe provided the capability to match the
specified profile to within 0.05 mm. The area-contraction ratio is 25-to-1, and the

iength-to-diameter ratio is 5-to-1,

The upper and lower halves of the nozzle meet at the inflection point of the
profile. A thin annular slot is formed by these two halves. Smoke can be injected
tangential to the main flow through this slot. This slot location was chosen since it
is a region of favorable pressure gradient. The slot is connected by an axisymmetric
passage to a small annular plenum in the outer portion of the nozzle. Smoke enters
the nozzle assembly through four ports and is made azimuthally uniform by hon-
cycomb in the annular plenum. A bottle of compressed air przvides the air source
for the injected smoke flow. This secondary air flow is regulated by a Matheson
single-stage regulator {model 11.346). The flow rate is controlled by a high-precision

needle valve connected to a Matheson rotameter (model 605).

The excitation source was chosen on the basis of estimations of the required exci-
tation frequency and amplitude. From the definitions of the Reynolds and Strouhal

numbers, one can derive the following expression for the excitation frequency, f:

174
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The work of Lee and Reynolds demonstrated that bifurcating jets occur in the
Strouhal number range of 0.4 to 0.7, based on the axial excitation frequency. Thus,
generating bifurcating jets in this apparatus at Reynolds numbers up to 100,000
would require excitation frequencies over 2 kHz. Additionally, assuming that the
perturbation pressure amplitude scales linearly with the mean jet exit velocity, one
can conjecture from the low Reynolds number results that sound pressure levels of

around 130 dBB would be required.

To achieve these high levels of excitation, compression drivers are used. These
high-power, high-efficiency acoustic drivers are frequently matched with horns as
part of large sound systems. In this apparatus, one driver is attached to the plenum
as shown in Fig. 4.2. The other four drivers surround the plenum. Each driver is
connected to a 2-cm-diameter, 1.1-m-long, stainless steel, round tube. These tubes
act as wave guides which carry the acoustic wave from the compression drivers to
the acoustic passages in the nozzle assembly. Since shear layers are most susceptible
to acoustic excitation at the trailing edge, these passages are designed to focus the
acoustic signal at the jet exit. All five drivers are identical JBL 2485J, 120-watt,

compression drivers.

The entire apparatus is supported by a rigid steel frame which sits on heavy-
duty casters with leveling feet. This allows for easy transport and for adjusting the
apparatus to be horizontally level regardless of the flatness of the floor. A 70-cm by
70-cm particle board panel surrounds the nozzle assembly and sits flush with the

jet exit. The jet is oriented vertically, and its exit is 1.2 m above the floor.

Baffles made of particle board and Sonex standard, 7.6-cm-thick, acoustical foam
surround the jet on all four sides. This Sonex foam has an absorption ratio of one
down to 500 Hz. These baffles are located 1 m from the jet on each side. For visual
access into the test cell, one of the baffles has a 46-cm by 61-cm rectangular opening
covered with a thin Plexiglas sheet. One adjacent panel has a thin slit for passage
of a laser light sheet. Entrained air flows into the test cell through the 0.8-m gap

between the haffles and the floor. The air discharges to a positively-vented exhaust
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hood located 1.3 m above the jet. This hood is lined with ‘Hypalon’-coated Sonex

1 foam.

4.3 Excitation system

The acoustic excitation consists of signals of two different modes and frequencies.
The axial mode is generated by either the acoustic driver in the jet plenum or by
the four external drivers. An approximate first-order helical mode is produced by
proper phasing of the sinusoidal signals routed to the four external drivers. The
signals of adjacent drivers are 90° out of phase, and those of opposite drivers are
180° out of phase. A transverse instead of a helical mode is produced when only
two opposite drivers are used. In the case of the bifurcating jet, the ratio, Rf, of

axial frequency, f,, to helical frequency, fj is exactly two.

A function generator (Circuitmate FG2) produces the reference sinusoidal signal
at the helical excitation frequency. A PAR 121 lock-in amplifier uses this reference
signal to generate a sinusoidal signal doubled in frequency. The reference signal
is also fed into a custom, two-channel phase shifter. The first channel shifts the
reference signal an arbitrary amount from 0° to 360° relative to the frequency-
doubled signal. This phase shift corresponds to the relative phase between the
axial and helical signals. The second channel shifts the output of the first channel
an additional 90°. Sound measurements verify that the corresponding acoustic
signals are also 90° out of phase. The outputs of these channels provide the signals
for two adjacent external drivers. The properly-phased signals for the other two
drivers are obtained by physically reversing the standard connection between these
drivers and the amplifier or by electronically inverting the appropriate signals. The
frequency-doubled signal is the axial excitation signal. Both excitation frequencies
will typically be discussed in terms of the corresponding Strouhal numbers St, and

Sty, where St, == foD/U and Sty = fLD/U.
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These low-level signals are amplified with audio amplifiers. A Pioneer A-60,
100-watt/channel, integrated awplifier is used with the low-speed apparatus. Ken-
wood M1 (100-watt/channel) and Kenwood M2A (220-watt/channel) power am-
piifiers and a Kenwood €1 preamplifier are used with the high-speed apparatus.
The low-level and amplified signals are monitored with a multi-channel oscilloscope
(Iwatsu SS-5706), digital frequency counter (HDP 5314A), and high-accuracy multi-
mieter (Fluke 8%42A). When only the four external drivers are used to produce both
the axial and helical signals, the axial and helical signals are electronically added
prio” to amplification.

The relative phase between the axial and helical signals is typically set so as to
produce the widest-spreading jet in the plane of the light sheet. Since fg/f) = 2,
one only needs to shift the helical signal from 0° to 180" to cover the fuu range of
relative phase angles. Phase angles that differ by 90° correspond to mirror images
of the jet. When the light sheet coincides with the azimuthal piane containing two
opposite drivers, the maximum spreading angle is observed when the relative phase
of the axial and helical signals of either driver equals 47° £ 15° (at Re == 100, 000).
The corresponding phase angle at Re = 50,000 is 31° + 15°. These phase angles
correspond to the approximate alignment of every other peak of the axial signa!l

with a peak of the helical signal.

4.4 Flow-visualization techniques

To mark the shear layer and vortex structures, smoke is injected into the bound-
ary layer in the nozzle. The smioke is illuminated with cither an electronic strobo-
scope (General Radio 1531-A) or a 10-watt (2 mJ/pulse at 5-kHz repetition rate),
cepper-vapor, pulsed laser (Plasina Kineties 151). A single flash from the light
sonrce provides instantaneous pictures. Phase-averaged pictures are obtained with
multiple flashes by trigeering the light source such that each flash occurs at the
sarne phase of the reference signal. The strobe enables ene to visualize the entire

jet while the laser illuminates only cross-sections of the flow. The laser produces
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the most detailed pictures not only because it is focused into a thin sheet but also

because it has an extremely short pulse duration (30 ns vs. 1.2 us for the strobe).

Most photographs are taken with a Nikon FE2 35-mm camera with a Nikon 2.8,
&5-mm, micro Nikkor lens. The f-stop is set to 2.8, and the shutter speed is varied
according to the desired number of laser pulses per exposure. For the instantaneous
pictures at Ke = 50,000 and 100,000, a Nikon 1.4, 50-mm, Nikkor lens is used with
the f-stop set to L4, Kodacolor VRG (ASA 400) print film is significantly more
sensitive to the greeu laser light than is Ektachrome {ASA 400) slide film. Thus
slides are made from the prints rather than exposed directly. For black and white
prints, either Kodak Tri-X (ASA 400) or Kodak TMAX (ASA 400) film is used.
odak TMAX film was found to be the best option. It provided excellent results
oven when developed at ASA 800.

A external triggering circuit designed by Eaton (1986) controls the repetition
~1te of the copper-vapor laser. Since the laser is a very strong noise source, the trig-
gering circuit is optically coupled to the laser power supply. This circuit includes a
manually-adjustable internal trigger as well as inputs for a remotely-enabled exter-

nal trigger.

For single instantaneous exposures, the laser repetition rate was set manually
at various values between 200 and 250 Hz, and the camera shutter speed was set at
17250, Occasionaily, portions of the film were not exposed since the camera is not
synchronized with the laser in this case. However, setting the repetition rate to 240
Hz was found virtually to eliminate this partial exposure problem. The appropriate
combination of repetition rate and shutter speed will vary with different cameras.
it should alzo he noted that this triggering scheme does not allow one to specify the
phase of the laser pulse relative to the acoustic excitation.

For phasesi veraged pictures, the laser is triggered to fire at a particular phase of
he reference excitation signal. Zero-degrees phase corresponds to the peak of the
referenice signal. A pulse synchronization circuit converts the reference sinusoidal
denal into a pulse and phase shifts that pulse from 0° to 360° as specified by the

guer. This pulse serves as the external trigger for the Eaton triggering circuit.
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The triggering circuit is connected to the camera’s autodrive (Nikon MD-12) such
that the laser operates at the excitation frequency only when the camera shutter
is enabled. At all other times the laser operates at its normal operating rate of 6
kIlz. The triggering system is sketched in Fig. 4.12, and the corresponding timing
diagram is given in Fig. -.13. The number of laser flashes per exposure, F, is

deterinined by the repetition rate and the camera shutter speed.

Visualizing an excited jet at successive phases of excitation is similar, thought
not usually identical, to watching the time evolution of the jet. The two visual-
izations are identical cnly if the pictures at successive phases are taken within one
period of the excitation. Referencing the flow pictures to the excitation phase allows
ore to determine the phase relationship between excitation and vortex formation.
3ecause of the manner in which the laser is triggered, the phase of the excitation
at which the laser flashes is only known for phase-averaged visualizations. The
rhase corresponding to instantaneous pictures can be estimated by comparing the

instantansous pictures with the phase-averaged pictures.

One can estimate the frequency associated with vortex structures from mea-
surements of the distance between them. Let ! represent the streamwise distance
between the centers of the cores of two adjacent, fully-developed vortices. Let U be
the local mean centerline velocity at z, and let I’, be tlic time-averaged centerline
velocity at the jet exit. By approximating the vortex propagation speed by U/Z,
one obtains the following approximation for the vortex passage frequency, fy:

U

From the definition of St and the approximation U ~ U,, which is valid near the

jet exit, one obtains

Stp =~ g— 4.3
anrd
Sty ~ i 4.4
i 2!




where Stp is characteristic of the forcing and Sty is characteristic of the jet’s initial
instability. From the definitions of Stp and St4, the ratio of the natural frequency,
fn, to the forcing frequency, f;, can be expressed as
In _ StgD
fa Stph

These equations are used in Ch. 5 to estimate from pictures the natural frequency

4.5

of the shear layer.

Since the laser resides in an adjacent laboratory, a set of mirrors (Newport
20D20BD.1) and lenses are used to focus the beam into a thin sheet and to direct
it into the test cell. A 2-m-focal-length, convex spherical lens (Melles-Griot 01
LDX 263/078) and a 200-mm-focal-length, concave spherical lens (Newport KPC
070AR.14) focus the beam while a 150-mm-focal-length, concave cylindrical lens
{Melles-Griot 01 LCN 008/078) expands the beam in one plane. By changing the
distance between the two spherical lenses, one can position the thinnest portion
of the light sheet at the jet exit. This setup provides a light sheet that is less
than 1-mm thick at the jet exit. A 5.1-cm laser window (Newport 20QB20XR.14)
in the laboratorv -wall provides isolation between the two rooms. All mirrors are
99% reflective, and the lenses and window are 99% transmissive at the operating

wavelengths.

The strobe is used with a VHS video camcorder (Panasonic PV-200D) primar-
ily for preliminary studies and setup. The strobe frequency is manually set at a
submultiple of the excitation frequency. When the strobe frequency is an exact sub-
multiple, the flow structures are seen to sit motionless in space. Slight deviations

from exact submultiples provide a sense of motion.

Several different smoke sources, including incense, cigarettes, cigars, vaporized
mineral oil, and titanium tetrachloride (TiCl4), were considered. The titanium
dioxide (TiO2) smoke, which is formed from TiCl4, scatters the most light but
is also hardest to handle since hydrochloric acid is a by-product of the formation
process. Neither the incense nor the mineral oil produced an adequately dense

smoke. Tobacco smoke provided the best compromise between ease of handling and
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amount of light scattering. Cigars are used instead of cigarettes since they burn

much longer.

The smoke generation system consists of cigars (Phillies Titan), Pyrex flasks,
and an air source. In the low-speed apparatus bypass air from the blower provides
the necessary air. In the other apparatus the air is obtained from a compressed air
cylinder, and the flow rate was maintained at 2% of the jet flow rate. This flow
rate was chosen since the ratio of the injection-slot area to the nozzle cross-sectional
area at the injection location is approximately 2%. The air is forced through the
cigars burning in the flasks, and the cigars were found to burn most effectively if

two small holes were made in the skin of each cigar near its unlit end.

The outlet ports of the flasks are connected to a mixing chamber. This chamber
is in turn connected to each inlet port on the nozzle assembly through over two
meters of copper and Tygon tubing. This long length of tubing allows the smoke
flow to cool prior to entering the nozzie. The amount of smoke can be varied by
varying the flow rate and/or the number of cigars. Four cigars were used in the
high-speed experiments. The nozzle surface was cleaned regularly, and the room
humidity was kept low to prevent the cigar smoke from leaving deposits on the

nozzle’s surface.

4.5 Velocity and pressure measurements

Both velocity and pressure measurements were made to document the jet initial
conditions and the excitation signals. The time-averaged, centerline velocity at
the jet exit was calculated from the plenum pressure, whick was measured with
a high-accuracy (£0.005 in. H,0), Meriam manometer (model 34FB2). A hot-
wire anemometry system measured the streamwise velocity profiles, and a small
condenser microphone positioned at the jet exit measured the level and phase of the
acoustic excitation. Since the purpose of the acoustic measurement is to quantify the
imposed perturbation and not to measure the jet noise, all acoustic measurements

were made with no flow. It is assumed that for a fixed input signal to the excitation
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systemn, the imposed perturbation is the same whether the flow is on or off. A
theoretical argument for making acoustic measurements with no flow as a means of
quantifying the acoustic excitation of a shear layer is given by Bechert (1988).

The hot-wire system consists of standard Dantec components. A 5-um-diameter,
platinum-coated tungsten wire with gold-plated ends is mounted on a straight probe
(model 55P°01) supported by a right-angle probe holder (model 55H22). The probe is
connected to a muitipurpose bridge (module 56C16) and signal conditioner {module
56N20). A two-dimensional, manually-actuated traverse moves the probe in a plane
parallel to the jet's axis. A high-accuracy dial indicator enables setting the probe
position tc within 0.025 mm of a desired value.

A dedicated AT-type, 10-Mhz micreccomputer (AST Premium 286) handled the
data acquisition and processing. The data was acquired with a Data Translation
analog-to-digital converter {model 2821-16SE-F) and stored directly in extended
memory or on a 70-Mb iMiniScribe hard disk. With this configuration single-channel
data could be continuously acquired ard stored at rates up to 130 kHz to memory
and 50 kHz to disk.

All ‘linearization’ and temperature compensation of the hot-wire data was done
in software. Calibration datu were obtained with the hot-wire probe positioned at

the center of the jet exit and were fit to the King’s Law:
E? = B + Ku™, 4.6

where £ is the bridge output voltage and u is the streamwise velocity. The coef-
ficients &5 and X and the exponent n were optimized to minimize the error. The

temperature compensation used is that due to Bearman (1971):

4.7

N 1/2
E o B | L T) ’

\Tu T
where T,, is the wire temperature, T is the ambient temperature, and the reference
state is thal a! calibration.

A 0.6-cin-diameter condenser microphone (Bruel & Kjaer 4136) was positioned

one nozzle diameser (20 mm) from the jet exit and half a diameter (10 mm) from
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the jet centerline. The microphone was oriented perpendicular to the jet’s axis
and pointed toward the jet centerline. In the azimuthal direction, the microphone
was lined up with one of the wave guides. The microphone was connected to a
preamplifier {Bruel & Kjaer 2619) which in turn was connected to a heterodyne an-
alyzer (Bruel & Kjaer 2010). This analyzer was simply used to provide an accurate

measurement of the sound pressure level (SPL), where

pl
SPL = 20log;o ( ) . 4.8

Pref
The analyzer was set for a linear frequency response, and all pressure measurements

are referenced to pes = 2 X 107° Pa.

At o given frequency, doubling the amplitude of the excitation signal should, in
theory, result in a 6 dB increase in the measured SPL. The deviation from theory
was within +0.1 dB in the axial mode but was as high as +1 dB in the helical
mode. From day to day, the measurement of the axial perturbation was repeatable
to within 2% of the measured pressure fluctuation. At z/D = 1, the difference
between the pressure fluctuations at r/D = 0 and r/D = 0.5 was also within 2% of
the measured fluctuation. Measurements of the helical perturbation were repeatable
to within 3% at high excitation amplitudes but deviated by as much as 25% at the

lowest excitation amplitudes.

Calibration curves of rms pressure fluctuation, p’, measured at z/D = 1 and
r/D = 0.5, versus electrical signal amplitude were established at each frequency
of interest for both the axial and helical modes. Each curve was essentially linear.
During flow-visualization and hot-wire experiments, the electrical signal amplitudes
are measured to within 0.5% of their actual value. The corresponding pressure
fluctuations are calculated from the calibration curves and are reported in terms of
the non-dimensional quantity p, where p = p'/(%pUz). The velocity fluctuation at
the jet exit increases linearly with the axisymmetric pressure fluctuation, p}. The
strearnwise velocity fluctuations corresponding to different values of p, are presented

in Fig. 4.3.
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Chapter 5
EXPERIMENTAL RESULTS

The experimental methods and approach described in the previous chapter were

applied to four different types of jet flows. The first is a natural jet. This unexcited

jet provides a base case for the three other flows which all involve some type of

excitation. Second, axially-excited jets are considered. Our study of these flows
enhances our understanding of the effects of amplitude and phase on the control of
the vortex formation process. The third type of jet is excited only by a first-order
azimuthal mode. Since the bifurcating jet is generated by a combination of axial
and helical excitation, it is instructive to consider the effect of the helical excitation

alone. Finally, the main subject of this report, the bifurcating jet, is examined.

The range of parameters considered in this work both extends and parallels
the range of parameters considered by Lee and Reynolds (1985b). They focused
primarily on jets at a Reynolds number of 4300. This work investigates jets in
the 10,000 to 100,000 range. The low-speed apparatus is used for Re < 20,000,
while the high-speed apparatus is used for all higher Reynolds numbers flows. The
axial and helical excitation amplitudes used by Lee and Reynolds were fixed at
u'/U = 17% and §/D = 4%, where § represents the displacement of the nozzle tip.
The range of amplitudes examined here cover several orders of magnitude. Since
the experiments of Lee and Reynolds indicated that the bifurcation phenomenon
occurs only for 0.40 < St < 0.65, the same range is considered here. The key

dimensionless and corresponding physical parameters are compared in Table C.2.

5.1 Natural jet

All the jets considered here are round, turbulent, free jets with initially thin shear
layers. The natural jets are characterized in terms of Reynolds number, shear layer
thickness, exit velocity profile, and exit centerline turbulence level. The Reynolds

rumber Ke is based on the time-averaged, centerline exit velocity, U, and nozzle
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diameter, . The shear layer thickness is specified in terms of the vorticity thickness
b, where &y, = Umax/(du/dy)max- The turbulence level is defined as u’'/U, where
v/ is the root-mean-square of the fluctuating streamwise velocity. Measurements
of the initial conditions of the natural jet were provided by Mr. Philippe Juvet for
the high-speed jet and by Mr. Robert Koch for the low-speed jet. The initial shear

layer appeared to be laminar in all cases, and the physical parameters of all the

cases are summarized in Table C.3.

The low-speed facility was used to study jets at Reynolds numbers of 10,000 and
20,000. The centerline turbulence level at z/D = 0.1 is 1.3% at Re = 10,000 and
0.6° at Re = 20.000. The mean and fluctuating velocity profiles at Re = 10,000
are presernted in .ig. 5.1. The corresponding vorticity thickness is approximately

1.3 mm {6, /R ~ 0.12).

Thne high-speed jet facility was used to study jets at Reynolds numbers of 25,000,
50.000. and 100,000. The corresponding centerline turbulence intensities are 0.5%,
0.3%. and 0.2% (at z/D = 0.05). The mean and fluctuating velocity profiles of these
iets at 2/ D = 0.05 are presented in Figs. 5.2-5.4. In each case the velocity profiles
are top-hat in shape. The shear layer profiles of these cases are compare * in Fig. 5.5.
The vorticity thickness decreases with increasing Reynolds number from 0.43 mm
(6. /R = 0.043) at Re = 25,000 to 0.25 mm (,/R = 0.025) at Re = 50,000 to 0.18
mm (é,/R = 0.018) at Re = 100,000.

In all the cases studied in the high-speed facility, the flow rate of the injected air
was two percent of the total flow rate. Figures 5.6 and 5.7 compare velocity profiles
with and without air injection through the smoke slots. Note that the shape and
size of the shear layer is not altered by the blowing. In the low-speed facility, the
smoke flow was adjusted until it appeared to have no significant effect on the jet

but was not separately metered.

[nstantaneous cross-sections of unexcited jets at Reynolds numbers of 50,000
and 100,000 are displayed in Figs. 5.8 and 5.9. In both cases the shear layers are

iritially laminar but undergo transition to turbulent layers within one jct diameter.
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The process of transition consists of the formation of very small vortex rings fol-
lowed by one stage of vortex ring merging and the subsequent breakdown of those
rings into turbulent puffs. The vortex merging occurs asymmetrically. In one case
(Fig. 5.8), two vortex cores are seen merging on the left side while apparently three
are combining on the right side at the same downstream location (2/D = 0.7). This
indicates that different azimuthal sections of a vortex ring do not always behave
the same. It is also evident from this picture that the smoke interface between the
jet core fluid and the ambient fluid sometimes disappears between adjacent vortex
cores. This observation suggests that the ring formation and merging processes

locally stretch the shear layer so strongly that it is torn.

Using Eqn. 4.4 to estimate the initial vortex formation frequency from Fig. 5.8
and using the approximation 8 ~ §,/4 to determine 8 (see Monkewitz & Huerre
1982}, one obtains Sty = 0.014. This is fairly close to the shear layer’s initial most
amplified frequency, which is typically taken to be Sty = 0.017 (Ho & Huerre 1984).
Since Eqn. 4.4 is merely an approximation and since background disturbances can
cause the observed most-amplified frequency to differ from the theoretical one, it
is not surprising that these two values are slightly different. The fact that the
estimate is as close as it is to the actual value indicates that this ‘back-of-the-
envelope’ analysis can be useful. Substituting Sty = 0.014 and Stp = 0.55 into
Fqn. 4.5, one notes that typical forcing frequencies are about eight times lower in
frequency than the initial vortex formation frequency. Thus, the amplification rate
corresponding to the forcing frequency is at least an order of magnitude lower than

the maximurn amplification rate (Michalke & Hermann 1982).

Another striking feature of these natural jets are their strong three dimension-
ality. The smoke boundaries on both the interior and exterior surfaces of the shear
layer are very ragged. In general, the shear layer spreads more rapidly on its ex-
rerior side. Beyond z/D = 1, large-scale structures are not clearly evident though
.hey are suggested by various patterns in the shear layer. Two large blobs of smoke
1 z/01) - 2and 3 are apparent on the left side of the jet (Fig. 5.8). In the other jet

P17, 5.9), two blobs of smoke are seen on the right side at z/D = 6 and 8. It is not
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surprising that the distance between these blobs is much larger than that between
the other pair of blobs since these structures are much farther downstream. One
would expect the largest length scales to increase with downstream location. Be-
tween these two blobs is a thick strand-like structure reminiscent of the vortex sheet
connecting adjacent rollers in a plane mixing layer. In some instances (Fig. 5.10),
the potential core wanders left and right as a meandering river. It will be shown in
Sec. 5.3 that this zig-zag pattern is a signature of the first-order helical instability

in jet flows.

Multiple-exposure cross-sections of natural jets at Reynolds numbers of 50,000
and 100,000 are pictured in Figs. 5.11 and 5.12. The raggedness of the shear layer
is smoothed away by the ‘averaging’ achieved by the multiple exposures. Small
vortices are still somewhat visible in the near field. Comparing Figs. 5.11 and 5.12,
one can see that increasing the Reynolds number results in an earlier transition to
turbulence and an apparently longer potential core. In both cases the jet appears
fairly symmetric about its centerline. As was seen in the instantaneous pictures,
the length of the potential core increases with Reynolds number while the length of
the laminar portion of the shear layer decreases. One would not expect the helical
instability to be distinct in multiple-exposure pictures since the jet does not always
succumb to that instability and since the zig-zag pattern could take any azimuthal
orientation. The contrast between the instantaneous and multiple-exposure views
clearly demonstrates the impcertance of having both views to get an accurate concept

of the features of a flow.

Multiple-exposure pictures at Re = 25,000 reveal many of the same features
of the higher Reynolds number jets. Laminar and turbulent vortical structures of
differing scales and asymmetric ring merging are evident in Figs. 5.13 and 5.14.
Since only four exposures are combined in these pictures, many of the fine details

remain.




5.2 Axially-excited jet

By imposing a single-frequency, axial excitation, one can control the frequency
at which the shear layer rolls up into distinct vortex rings. As a result, phase-
averaged pictures can capture these structures. This section illustrates the effects
of differing excitation amplitudes and present the phase evolution of the vortex
structures. Additionally, the internal and external means of introducing the axial
excitation are compared. Unless otherwise stated, the axial excitation is introduced
internally by the acoustic driver in the plenum at Re = 10,000 and 20,000 and is
generated by the external drivers at the higher Reynolds numbers. In most cases,

the Strouhal number, Stg, given by foD/U, equals 0.55.

One example of the differences between natural and axially-excited jets at Re =
10,000 is depicted by the instantaneous strobe pictures in Fig. 5.15. The shear layer
and initial vortices in the natural jet remain laminar for a much longer distance than
those in the higher Reynolds number jets. The axial excitation causes the shear
layer to start to roll up sooner and results in the vortices being larger and more
regularly arranged. The mushroom-shaped structure at z/D = 5 is the consequence

of one ring being pulled through and wrapped around another ring.

Instantaneous cross-sections through the center of the jet show interesting dif-
ferences in jet response to p,. At low levels of streamwise forcing, one controls the
vortex formation frequency by causing a periodic collective interaction of the thin
closely-spaced rings near the jet exit. The axially-pulsed jet at Re = 20,000 and
Pa = 1.6% is an example of this (Fig. 5.16). The thin rings form independently of
the forcing while the large rings form because of the forcing. Looking at the larger
vortex structure at z/D = 3, one can note differences in the shape of the jet core
around this structure. Upstream of the structure, the core’s two sides are convex.
Downstream of the structure, the core looks like an arrowhead. The coblong mass

of vortical fluid at the tip of this ‘arrowhead’ is the result of a vortex merging.

At higher levels (pa = 12%), the thin vortex rings are no longer visible, and
instead, one sees the initial formation of rings whose spacing is on the order of the

jet diameter (Fig. 5.17). The stronger excitation causes a tight roll-up of the shear
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layer and the formation of very large laminar rings. The structure of the vortex
cores shows many interfaces between the jet fluid and the entrained fluid. Several
diameters from the exit, a vortex ring exhibits severe deformation and elongation
due to the pairing process. As pairing occurs, the core of the upstream vortex ring

changes from a circular to an oblong structure.

{rstantaneous pictures at different phases of excitation at Re = 10,000 are pre-
sented in Fig. 5.18 The pictures are arranged in successive phases of the initial
roil-up of the shear layer. From these pictures one can see that a vortex ring grows
by wrapping more and more of the shear layer around itself as it propagates down-
stream. Eventually, the roll-up process stops, and consequently the independent
growth of the vortex structure does also. Further growth is no longer achieved by
additional roll up of the shear layer but by the amalgamation of vortex rings. In
ceriain lustances as many as five vortex rings remain distinctly visible and orga-
nized at one time (Fig. 5.18d). This contrasts sharply with the natural jet seen in
Fig. 5.15.

Phase-averaged pictures of a jet at Re = 100,000 and at phase intervals of 90° are
presented in Fig. 5.18. Since the laser is triggered by the excitation signal, the fact
that the positions of the rings remains the same over 17 exposures demonstrates that
the large rings are being formed at the forcing frequency. In both the instantaneous
and phase-averaged pictures (Figs. 5.17-5.19), the spacing between adjacent, fully-
developed vortex rings that are not pairing is about one diameter. These two cases
differ in Re by a factor of ten but are identical in St, and hence, the spacing between
rings is essentially identical.

The effects of amplitude variations seen at the lower Reynolds numbers are also
seen at the higher Reynolds numbers. Instantaneous pictures of axially-excited jets
at e - 70,000 and 100,000 are shown in Figs. 5.20 and 5.21. In both cases one sees
varying scales of voriex structures that are very distinct from each other. The axial
excitarion i effective in generating the desired large vortices. Since the amplitude
is a factor of 4 higher in the Re = 100,000 case, the vortex rings in that jet are

sinich more distinet and organized. The pronounced circular void of vortical fluid
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in the large vortex ring is the consequence of ambient fluid being engulfed during a

pairing event.

Several cases with different amplitudes at Re = 50,000 are compared in Fig. 5.22.
The large vortex structures become more distinct as the amplitude is increased,
however, the formation of the small, initial vortex rings appears unaffected except
at the ve y highest amplitude. The highest amplitude is a factor of 9 greater than
the lowest one. In Fig. 5.22d, the helical instability is present downstream of the

potential core.

The same cases considered in Fig. 5.22 are visualized by the phase-averaged
technique in Fig. 5.23. It is important to remember that while the phase-averaged
pictures all correspond to the same phase of excitation, the instantaneous pictures
do not. As in the instantaneous pictures (Fig. 5.22), the vortex cores in the phase-
averaged pictures (Fig. 5.23) become more distinct as the amplitude is increased.
The vortex cores form a staggered array as the amplitude is increased. This would be
expected of a helically-excited jet but not of an axially-excited jet. The explanation
for this phenomenon is not clear, though one might conjecture that energy is being

transferred from the axial to the helical instability.

A comparison of axially-excited jets at Re = 100,000 and at different amplitudes
is provided by the instantaneous visualizations in ¥ig. 5.24. The excitation at the
two lowest amplitudes appears to have little or no effect on the shear layer. The
excitation at the highest amplitudes is quite sufficient to generate distinct vortex
rings. At the very highest ampiitude, the eye of the vortex is completely clear cf
vortical fluid. The deformation of a vortex ring due to pairing is also evident in

Fig. 5.24d.

The corresponding phase-averaged pictures are given in Fig. 5.25. From these
pictures, one can see that even the low amplitude excitations do alter the structure
of the shear layer in a fashion characteristic of the excitation frequency. Comparing
Figs. 5.23 and 5.25 demonstrates that the same absolute level of forcing does not

produce the same effect at these two different Reynelds numbers.
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In Fig. 5.25d, the cores of the vortices are still quite clear in spite of averaging
over 17 exposures. The fact that two different scales of structures remain distinct
and localized indicates that the smaller structure corresponds to the first harmonic
of the frequency characteristic of the larger structures. The vortices correspondiug

to the forcing frequency are the result of at least two stages of vortex coalescence.

A close-up of an axially-excited jet at Re = 25,000 is given in Fig. 5.26. Since
only four exposures were taken, this phase-averaged picture appears much like in-
stantaneous pictures. The large, turbulent rings are fixed in space, but the small
laminar ones are not. Thus, the large structures do not correspond to an exact
subharmonic of the small structures. Multiple rings combine to form the large
structures by a ‘collective interaction’ process like that described by Ho and Huang
(1982). The effects of different amplitudes are compared in Fig. 5.27. The highest
amplitude considered is sufficient to bypass the collective interaction process and

produce the large structures directly.

A comparison of excited jets at different St; but the same excitation amplitude
is presented in Fig. 5.28. Figure 5.28a corresponds to St, = 0.55. The Strouhal
numbers of Figs. 5.28b and 5.28c are slightly higher at 0.6C and 0.65. These small
variations in St, result in noticeable changes in the spacing of the vortex structures.

As one would expect, the rings are closer at higher St,.

In the high-Reynolds-number facility, when the axial excitation is produced by
the tnternal acoustic driver, increasing the excitation amplitude can cause separa-
tion of the boundary layer in the nozzle (Fig. 5.29). When the separation occurs,
the smoke issuing from the nozzle is no longer only a thin laminar stream but is
also a large turbulent structure. The separation appears to occur periodically. Ad-
ditionally, the boundary layer of the flow at Re = 100,000 is more robust and does
not separate until much higher levels of forcing. When the axial perturbation is

produced by the external drivers. no separation is observed.

Though the separation is linked to certain levels of forcing from the internal

driver, its exact cause is not known. It is possible that the shear layer formed
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inside the nozzle by the main and injected flows is adversely affected by the acous-
tic forcing. Another plausible explanation is that the compression driver produces
vortex rings that propagate through the plenum and interact with the nozzle bound-
ary layer. No production of vortex structures away from the plenum walls would
be expected in the low-speed apparatus since the speaker is a conventional conical-
diaphragm loudspeaker whose diameter is approximately equal to the plenum diam-
eter. in the high-speed apparatus, however, the acoustic signal leaves the compres-
sion driver through a 5-cm-diameter opening which is coupled to the 10-cm-diameter

plenum by a wide-angle conical diffuser.

A jet at Re = 100,000 was excited by both internal and external axial forcing
to compare the effects of these two different means of introducing the same fore-
ing mode. Figure 5.30 compares these effects at low excitation amplitudes while
Fig. 5.31 provides a comparison at high excitation amplitude. Both means of forc-
ing control the vortex formation process. The difference shows up in the minimum
amplitude required to generate distinct vortex rings and in the size of those vor-
tices. It appears that the internally introduced excitation is much more effective in
causing vortex roll-up and hence produces larger structures at a given forcing level.

Figures 5.30 ar.d 5.31 also provide an unintended example of narticle-tracking. A
particle track is seen to the right of the jet near its exit in Fig. 5.30a. Another track
i« seen in the upper left corner of Fig. 5.31b. These tracks provide an indication of
the movement of the entrained flow. Velocities could be deduced from these tiacks
since the laser repetition rate is known. For example, the particle track consisting
of the four dots near the jet exit in Fig. 5.30 corresponds to a velocity of 17 m/s in
the plane of the light sheet. It is interesting that the particle in Fig. 5.31b moves
downstream and then upstream as it nears the jet. This cusped pattern suggests
that organized structures might exist in the jet even where they are no longer visible

due to the limitations of the smoke-visualization technique.
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! 5.3 Helically-excited jot

Fiven as a regular array of coaxial voriex rings indicates an axially-excited jet, a

spiral defermation of a jet’s share is a signature of a helically-excited jet (Fig. 5.32).

‘s signature takes different forms as the level of excitation is changed. At higher
levels of forcing, the spiral shape is more pronounced and the vortex structures are
larger {Figs. 5.33 and 5.34). The staggered orientation of the vortical structures in
these cross-sections suggests that the structures are sections of tilted rings or of a
spiral tube.

As was seen n the amally-excited iets, the same absolute excitation level does
not have tne same effect at different Reynolds numbers. Figures 5.33 and 5.34 cor-

respond to the same absclute level of excitation but different Re. Phase-averaged

szlizations of helically-excited jets at different excitation ampiitudes and Reynoids
sumbers are given in Figs. 5.35 and 5.36. From Fig. 5.36, one can note that in-
creasing amplilude increases tne global spreading angle of the jet. This correlation
of amplitude and angle is not seen in the axially-excited jet (Fig. 5.25).

The effect of St at a fixed excitation amplitude is seen in Fig. 5.37. A similar
comparison at a higher amplitude is presented in Fig. 5.38. Figures 5.39 and 5.40
provide an enlarged view of the near field of these flows. The primary effect of
ncreasing Sty is the decrease of the spacing between vortex structures. Two vortex
cores are seen coalescing on the right side of tle jet in Fig. 5.40c.

The values of St considerad here were choiien to be one nalf of the values used
nothe axilly-excited jeo (Fig. 5 28). This choice follows from the fact that in the
Hifurcating jet the helical frequency is half of the axial frequency.

The phase evolution of a helically-excited jet 1s shown at Reynolds number
100,600 in Fig. 541, Successive pictures are separated by 45° in phase. Focusing
nn the phase evohition of ihe chear laver arcund z/D = 2, one notes that the
shear faver tnitially thickens, thea forns a large vortical structure, and subsequently

“tansoas the vorticnl ctructure propagates downstream. Another way to corsider

e phise-evolutien of the jet i 1o wateh the changing shape of the jet core. At
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some phases the initial bend of the jet core is to the right while at other phases it is
to the left. Comparing views that are 180° apart in phase is like looking at mirror

images of the same flow.

5.4 Bifurcating jet

The structure of the bifurcating jet differs dramatically from those of the axially
and helically excited jets. Figure 5.42 displays a cross-section of a bifurcating jet in
the plane of bifurcation at Re = 10,000 and St,; = 0.55. The jet appears similar to
an axially-excited jet near the exit except for the slight displacement and tilt of the
vortices. Farther downstream, however, the flow abruptly splits into two distinct
jets with an included angle of 70°. Initially adjacent vortex rings propagate along
different branches of the jet. This results in the jet fluid being stretched back and
forth between the two branches of the jet. Eventually, the vortex sheet connecting

adjacent vortex rings vanishes.

In this case a transverse rather than helical excitation is used. The transverse
forcing is achieved by turning off the two external speakers that do not lie in the
plane of bifurcation. Bifurcation occurs only when the phase between the axial and

transverse signals is properly adjusted.

Figure 5.43 presents this bifurcating jet at different phases of the transverse
excitation. Figures 5.43a-d correspond to one half of the excitation period, and
Figs. 5.43e and 5.43f correspond vo the other half. During each half of the period
one vortex ring is produced near the jet exit. This is consistent with the fact that
the ratio f;/f; exactly equals two. Since these two rings evolve during differe:.t

halves of the transverse signal, they tilt toward opposite sides of the jet.

Looking at the third ring downstream from the jet exit, one can see vortical
fluid being pulled through the cente of the vortex. In Fig. 5.43e, it appears that
the entrained vortical fluid originated from the vortex sheet connecting the second

and third vortices. As this segment of the vortex sheet passes through the third
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vortex, it closes on itself to form the observed closed element. It is subsequently

stretched toward the outer surfaces of the vortex ring as seen in Fig. 5.43f.

Figures 5.43c and 5.43d show that the vortex rings do not always remain intact
as they separate onto alternate trajectories. The left half of the fourth vortex ring

seen in Fig. 5.43c is swallowed by the fifth vortex ring in Fig. 5.43d.

A bifurcating jet at Re = 50,000 is displayed in Fig. 5.44. Unlike laminar vortex
rings in the low Re jet, the vortex rings in this flow are very turbulent. Additionally,
the large vortical structures are formed from the coalescence of much smaller ones
rather than directly from the initially laminar shear layer. The cross-sections of
several vortex rings can be seen on the left branch of the jet. Bifurcating jets at
Re = 100,000 and at different combinations of axial and helical amplitudes are

presented in Figs. 5.45 and 5.46.

The phase-evolution of a bifurcating jet at Re = 100,000 and St; = 0.55 is
nresented in Fig. 5.47. Each phase-averaged picture corresponds to a different
phase of the helical excitation. The phase difference between successive views is
45°. Within the first two diameters, one can see adjacent vortex rings tilted toward
opposite sides of the jet. In this case, however, the vortex structures are not able
to separate from each other onto alternate trajectories. Instead, sections of two
adjacent rings comrbine. In a full, three-dimensional view, one might see an array
of vortex rings tilting toward alternate sides of the jet with one side of a given ring
coalescing with a section of the ring downstream of it while its other side combines

with a portion of an upstream ring.

The bifurcating jet exhibits different behavior in the bifurcating and bisecting
planes. The bifurcating plane is the plane passing through the nozzle axis and
vontaining the two branches of the bifurcating jet. The bisecting plane is the plane
passing through the nozzle axis and perpendicular to the bifurcating plane. A
bifurcating jet at Re = 100,000 is viewed in both the bifurcating and bisecting
planes in Fig. 5.48. Note that the bifurcating jet does not spread axisymmetrically.
Instead, it spreads dramatically in the bifurcating plane while in the bisecting plane

the smoke disappears several diameters downstream from the jet exit. However,
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each branch of the jet spreads as a single jet along its own axis (Lee & Reynolds
1985b).

Unlike combined axial and transverse excitations, the relative phase between
axial and helical excitations does not determine whether the jet bifurcates but rather
determines the plane in which the jet bifurcates. One can rotate the bifurcating
jet about its centerline by simply changing the relative phase. Thus, one can look
at different cross-sections of the flow without moving the light sheet. Varying the
relative phase in 30° steps, one obtains the cross-sections in Fig. 5.49. Abrupt
changes in spreading angle are seen as the bifurcation plane is rotated away from
the plane of illumination. Views that are 180° apart are mirror images of each other

since they correspond to viewing the jet from opposite sides of the flow.

The effect of varying p; while keeping p, fixed is considered in Fig. 5.50. A sim-
ilar comparison at a higher value of p, is presented in Fig. 5.51. The corresponding
phase-averaged visualizations are given in Figs. 5.52 and 5.53. Figure 5.54 is an en-
larged view of Fig. 5.53c. One can see that the spreading angle definitely increases
with pj. Figures 5.50d and 5.51d suggest that increases of p; above a certain level
resuits in the spreading angle decreasing. However, one would not make the same
conclusion from the phase-averaged visualizations. Part of the explanation of this
discrepancy might lie in the fact that the instantaneous and phase- averaged pic-
tures do not generally correspond to the same phase of excitation. As Fig. 5.55
illustrates, when the phases of excitation are essentially identical, the two different

visualization schemes are consistent.

A similar comparison of amplitude variations at Re = 100,000 is presented in
Fig. 5.56. When pj is low, the jet is almost identical to an axially-excited jet.
Noticeable differences along with larger spreading angles result from higher levels
of py.

The effect of varying p, while keeping p;, fixed is considered in Fig. 5.57. The
phase-averaged pictures in Fig. 5.58 correspond to the same value of p, but to a
partially different set of values of 5. If p, is too smali, little difference is seen from

the helically-excited jet (Figs. 5.57a and 5.57b). At certain levels, increasing p,
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increases the spreading angle (Figs. 5.57c, 5.57d, 5.58b, and 5.58¢). The increases
in spreading angle are minimal when pg > 2.8% (Compare Figs. 5.56d & 5.59 and
Figs. 5.58c and 5.58d.).

Bifurcating jets at different St; are compared in Fig. 5.60. The corresponding
phase-averaged views are given in Fig. 5.61. A comparison at lower excitation levels
is presented in Fig. 5.62. Over this range of St,, the changes in spreading angle are
minimal although Fig. 5.60 does suggest a small increase in spreading angle with
Stg.

Along with excitation amplitude and frequency, the method of forcing also af-
fects the spreading angle. Figures 5.63 and 5.64 illustrate the effects of two means
of forzing on a bifurcating jet at Re = 100,000. In Figs. 5.63a and 5.64a, the axial
and helical excitations are introduced separately through the internal and exter-
nal acoustic drivers. In Figs. 5.63b and 5.64b, the two signals are combined and
are introduced through the external drivers alone. At the lower excitation level
(Fig. 5.83), there is cnly a small difference in the spreading angle between the two
means of forcing. At the higher level (Fig. 5.64), the bifurcating jet produced by

the separate excitations spreads much more rapidly.

Many of the trends observed in this section can be summarized by plotting the
spreading angle as a function of excitation amplitudes. The spreading angle is taken
to be the angle formed by the edges of the smoke. Except at Re = 10,000, only
phase-averaged pictures are used to determine spreading angles. Since the vortex
structures are very distinct and well organized at Re = 10,000, one can easily
determine the spreading angle from instantaneous pictures. The dependence of
spreading angle on excitation amplitudes at Re = 100,000 and 50,000 is presented
in Fig. 5.65 for the method of combined excitations. Figure 5.65a clearly shows
that the spreading angle increases as either excitation amplitude is increased. The
spreading angles range from around 17° (typical of natural jets) to over 40°. This

trend is not as distinct at Re = 50,000 (Fig. 5.65b).

The largest spreading angles (up to 70°) resulted when separate excitations

were used. Figure 5.66 displays the spreading angle characteristics of bifurcating
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jets at Re = 10,000 and 100,000 produced by separate excitation. These res.:its

also irdicate that the spreading angle increases with both excitations amplitudes.

The mean velocity field of a bifurcating jet at Re = 100,000 is compared with
that of a natural jet in Fig. 5.67. Since a single-wire probe was used to make this
measurement, the measured velocity is actually the magnitude of the velocity vector
in the plane of bifurcation. This result indicates that the double-peak profile seen

in low-Re flows {Fig. 1.4) is also characteristic of high-Re bifurcating jets.

5.5 Summary

This chapter contains the results of a flow-visualization study of excited jets.
The effects of axial, helical, and combined excitations on the structure of round
jets were considered. While a regular array of coaxial vortex rings are produced by
axial excitation, the shear layer of a helically-excited jet appears to form a spiral-
shaped vortex. Combining axial and helical excitations with f;/f) = 2 produces a

bifurcating jet.

Reynolds number and excitation amplitudes were the primary parameters con-
sidered in this experimental study. The Reynolds number was varied by changing
the mean velocity of the jet. As one would expect, a wider range of length scales
and turbulent rather that laminar vortex structures are seen at the higher Reynolds
numbers. Increasing the excitation amplitude produces more distinct vortex struc-
tures and, in the case of the bifurcating jet, generally increases the jet spreading
angle. The excitation amplitudes required to produce bifurcating jets was foun« to

increase with Re, but no general scaling relationship could be determined.
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Chapter 6
DISCUSSION

Properly-combined axial and helical excitations can cause a turbulent round
jet to split into two distinct jets. This unique flow, known as a bifurcating jet,
exhibits spreading angles as high as 70°. This work has focused on determining
the mechanism of bifurcation, extending previous work to higher Reynolds number
flows, and understanding the effects of excitation frequency, amplitude, and phase

on the evolution of bifurcating jets.

This research effort involved both a numerical and experimental investigation of
bifurcating jets. The numerical work primarily targeted the questions concerning
the mechanism of bifurcation and the role of excitation frequency. The experimental
work extended the bifurcation phenomenon to Ke = 100,000 and documented the

effects of various excitation parameters.

The research methods and results were described in Chapters 2-5. The signifi-
cance of those results is discussed in the following sections on natural states of round
jets, the structure and features of bifurcating jets, the role of excitation frequency,
the role of excitation amplitude and phase, and the mechanism of bifurcatic.:. The
effect of Reynolds number is touched on in each of these sections. The reasons for
the discrepancies between computations znd experiments are not completely clear,
but several possible causes are presented in Section 6.5. Finally, the chapter con-
cludes with some thoughts on the implications of this specific work on the general

issue of jet flow control.

6.1 Natural states of round jets

Stability theory predicts the existence of both axisymmetric and helical modes
in round jets (Michalke & Hermann 1982). This prediction is consistent with the
visualizations of unexcited jets (Figs. 5.8-5.10). Axisymmetric vortices of varying

scales are found in the near field, and the spacing of the initially-formed vortices
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corresponds to the natural frequency of the shear layer. The interaction of the ring
structures is quite asymmetric at the higher Reynolds numbers. Downstream of the

potential core region, the jet sometimes exhibits a helical structure.

Axial forcing produces an orderly arrangement of large axisymmetric structures.
At Ke = 10,000, these structures are initially laminar, and the roll-up of the shear
layer is clearly visible within the vortex cores (Fig. 5.17). At all higher Reynolds
numbers, the structures are turbuient, and pockets of ambient fluid within the core

are only seen at the highest forcing amplitudes (Fig. 5.24).

Helical forcing generates asymmetric vortex structures. We have demonstrated
this at Re up to 100,000 but expect it to be true at all Re for subscnic flows. The
cross-sectional view suggests that the complete structure is a single vortex coil like
that seen by Kech et al. (1988) at Re = 10,000. The phase-evolution of the helical
structure at Re = 100,000 indicates that the structure rotates as time progresses

(Fig. 5.41). Thus, the time-averaged, net axial vorticity is zero.

6.2 Structure and features of bifurcating jets

The most striking feature of the bifurcating jet is its wide-angle, Y-shaped struc-
ture. This structure is formed by the jet splitting into two distinct jets. Superim-
posed on this flow are the distinct vortex rings formed by the axial excitation.
Initially adjacent rings propagate along alternate branches of the jet (Fig. 5.43). In
the cross-sectional views, portions of the shear layer appear as filaments connecting
the initially adjacent rings. As the rings get far enough apart, the vortex sheet
connecting them is apparently torn apart. Eventually, the vortex rings break down
into turbulent puffs of smoke. The stretching of the vortex sheet and the breakdown
of the vortex rings results in smaller-scale secondary structures.

At the higher Reynolds numbers {Re > 10,000), there is a much wider range of
scales, and the structures are much more turbulent. As a result, the characteristic
Y-shaped structure seen at iower Re is not seen. Instead, one simply sees a jet that

spreads rapidly in one piane but not in the perpendicular plane. In the near field,
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however, vortex rings tilting in opposite directions are observed as in the bifurcating

jet at Re = 10, 000.

These observations about the bifurcating jet lead to an interesting question of
semantics. How should a bifurcating jet be defined? Two criteria are proposed.
First, do visualizations indicate that the jet splits into two separate jets? Second,
does the velocity profile of the jet consist of two separate peaks that persist into the
far field of the jet? Satisfaction of either of these criteria should be considered as
sufficient for classifying a jet as a bifurcating jet. The fact that a jet spreads much
more rapidly in one direction than in the perpendicular direction is not a sufficient
condition since elliptic and indeterminate-origin jets also exhibit this characteristic.
In the case where the turbulence of the flow obscures the structure of the jet, the
flow-visualization criterion should be that the jet fluid disappears as one moves
downstream in the transverse plane. This secondary criterion is consistent with
the pictures and velocity measurements presented in Figs. 5.48 and 5.67. Based on
these ideas, one might consider many of the “bifurcating jets” discussed in Ch. 5 to

correspond actually to a transition state linking natural and bifurcating jets.

6.3 Role of excitation frequency

The role of the excitation frequency can be characterized in terms of the fre-
quency ratio Rf and the axial Strouhal number St,. Dual-mode excitation will
cause a jet to split into two distinct, stationary jets only if Ry = 2. The flow
phenomena that occur when Ry # 2 are well documented by Lee and Reynolds

(1985b).

The axial Strouhal number determines the frequency characteristic of the largest
vortex rings. Consequently, St, also determines the spacing between rings, and
the spacing decreases as St, increases (Fig. 5.28). In a similar manner, the he-
lical Strouhal number determines the length-scale characteristic of helical struc-
tures (Figs. 5.39 and 5.40). Both the computations and the experiments of Lee

and Reynolds (1985b) demonstrate that within a range of Strouhal numbers, the
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spreading angle increases. Outside that range the jet does not exhibit two distinct

branches. Below that range the jet appears much like a natural jet.

The range of St over which the bifurcation phenomenon occurs does not depend
on 6,/ R. The vorticity thickness at Re = 10,000 is about seven times larger than
that at Re = 100,000, yet in both cases the maximum jet spreading occurs around
St, = 0.55. At very high excitation amplitudes, the bifurcating jet at Re = 10,000
and St, = 0.55 (Fig. 5.42) spreads at an angle identical to a bifurcating jet at
Re = 3700 and St, = 0.55 (Fig. 4.26¢ in Lee & Reynolds 1985b). These observations
imply that it is the large vortex rings formed by pairings or coliective interactions
and not the small ones formed by the initial roll-up of the shear layer that are
important in the bifurcation process. The invariance of St; over this Reynolds
number range also suggests that the key mechanism causing bifurcation is an inviscid

instability.

8.4 Role of excitation amplitude and phase

While the mode of excitation determines the type of structures formed, the
amplitude of excitation determines how distinct and how large those structures are.
"The amplitude also affects how structures are formed. In the case of axially-excited
jets, low and moderate levels of forcing produce large vortices by causing a collective
interaction or multiple pairings of the smaller vortices. Distinct structures first
appear in the phase-averaged views at Re = 50,000 and 100,000 when p, ~ 1%
(Figs. 5.23 and 5.25;. A large forcing level (s = 12%) can produce the large
structures directly at e = 10,000 (Fig. 5.18).

In the case of thin laminar exit boundary layers, /D scales with Re~1/2. Com-
bining this scaling relationship with Eqn. 4.5, one can show that the ratio of the
natural to the forcing frequency at fixed Stp and Sty scales with Rel/Z. Conse-
quently, as one increases e, one moves farther from the peak of the amplification

curve of linear stability theory. Therefore, stronger forcing is required as Re in-

creases.
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The Reynolds number also has an effect through the mean velocity, which is
an important scaling parameter in stability analysis. No clear Reynolds-number
scaling of the total amplification at a fixed Stp was found. This is not surprising
since both linear amplification and nonlinear saturation, as well as laminar and

turbulent structures, are involved.

In the bifurcating jet, increasing either the axial or helicai excitation can increase
the jet spreading angle. The results suggest that bifurcation does not occur below
certain levels and that jet spreading does not continue to increase beyond certain
limits. The bounds of this amplitude range could not be clearly defined.

Typically, it is the axial amplitude that must be larger. One might expect it to
be the other way around since the jet splits in the direction of the helical forcing.
However, it is the interaction of vortex rings that splits the jet and causes the
wide spreading angles, and it is the axial amplitude that governs the production of
those rings. The higher the axial amplitude, the more concentrated is the vorticity
of the rings and the stronger are their interactions. Also, linear stability predicts
that helical disturbances are more strongly amplified even in the near field when
thie disturbance frequency is much less than the natural frequency (Michalke &
Hermann 1982).

Along with the amplitude, the phase of excitation is very important. The phase
roterred to here is the relative phase between the axial and helical/transverse signals.
When a helical excitation is used, this phase determines the azimuthal plane in
which the jet bifurcates. When a transverse excitation is used, the phase determines
wuether or not bifurcation occurs. As aiscussed in Ch. 4, bifurcation occurs in the
azimuthal plane in which every other peak of the axial signal coincides with a peak

of the helicar signal.

6.5 Comparison of computations and experiments

A comparison of the numerical results with the experimental results of Lee &

Revnolds [19%5b) reveals both major similarities and significant differences. The
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Y -shaped structure of the bifurcating jet, the alternating trajectories of the vortex
rings, tive increase of spreading angle with Strouhal number and excitation ampli-
tade, and the inviscid vortex-interaction model are common conclusions. Another
interestize area of comparison is the relative spacing of the vortex rings. The pa-
ramieter §; was defined in Ch. 3 to be the ratio of the distance between rings on a
braneh of the hifurcating jet to that on the trunk of the jet. The analysis of a train
of rings velds Ry =1.6-1.7 over a wide range of St. The simulation of a bifurcating
ieeat st 042 predicts a value of Ry = 1.5. Experimental results indicate a value
clasors 1.5 {Figs. 1.1, 5.17, and 5.42). The fact that the jet splits into two distinct
S0ty reciores that the characteristic frequency of branch rings equal half that of

he axias perturbation. However, Ry does not equal two because of the decrease of

vortes oo veloeity with increased ring spacing.
txo oz of results differ in the specification of spreading angle dependence
ot s w0 5 St The numerical simulation requires an order of magnitude higher

ampli e to achieve comparable spreading angles. Additionally, the computations
conc.ide that hifurcating jets with distinct branches do not occur for St; > 0.42
whiie tle experiments specify a bound of St, > 0.65.

The-e discrepancies exist, in part, because of the approximations made by the
nurmmereal simealation. First, the numerical scheme represents vortex rings by piece-
wise linear segments. Second, to keep the number of parameters low, the tilt of
the nozz.e in the experiments of Lee and Reynolds (1985b) is not included. Finally,
the soll-uo of the shear layer is assumed rather than simulated, and only a single
tilarient euresents each vortex ring. Nevertheless, the numerical simulation does

]

cienriy demonstrate the central role of vortex interactions, and elimination of these

at proxi-oations would require a much more complex and costly simulation.

6.6 MNMochianisn of bifurcation

T he evolntion of imposed disturbances in shear flows is often discussed in terms

of “tetaiaty waves or vortex interactions. The dominant presence of vortex struc-
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tures in bifurcating jets, the nonlinearity of the bifurcation process, and the ap-
proach of the numerical simulations suggest reasoning in terms of vortex concepts.
One could possibly explain the physical mechanism of bifurcating jets in terms of
instability waves, but a vortex-interaction model is more intuitive and follows more

directly from the results of this work.

The mechanism causing bifurcation can be described in terms of vortex inter-
actions. The shear layer rolls up into a periodic array of vortex rings in response
to the axial forcing. The helical or transverse forcing displaces these rings eccentri-
cally. The resulting staggered array of rings is unstable. As a result, the rings tilt
away from each other until initially adjacent rings eventually propagate along two

different trajectories.

The instability of an eccentric arrangement of rings follows from their mutual
induction. Each ring causes its neighboring rings to tilt away from itself. The
strength of this interaction depends on the spacing and eccentricity of the rings
and their circulation. Thus, both excitation frequency and araplitude affect this
interaction and, consequently, the spreading angle of the jet. Once two separate
trajectories are established, the rings on each branch are concentric with each other,
and hence each branch evolves as a separate jet. Similar reasoning can be used to

explain the blooming jets.

8.7 Some thoughts on jet flow control

This work along with that of Lee and Reynolds indicates that one can dra-
matically modify the evolution of jet flows with moderate perturbations. The ef-
fectiveness of these perturbations lies in their ability to trigger Tow instabilities
that amplify the effects of the imposed excitaticns. Additionally, it is important to
note that the proper triggering of two different instabilities produce an effect that

neither can achieve on its own.

The specific means of introducing the required perturbations 1s not critical to

generating a bifurcating jet as long as the excitation is focused on the shear layer
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at the exit. Both mechanical and acoustic systems are effective, and in acoustic
systems, the different modes can be introduced separately or together. However,
these systems are not equally effective. Generation of the axial excitation by the
internal rather than the external acoustic drivers was found to be more effective.
Additionally, a helical excitation that only oscillates the origin of the jet can not
force the shear layer to roll up into a coil-like structure (Lee & Reynolds 1985b)
whereas a system that produces an azimuthally-varying helical perturbation can

(Koch et al. 1088).

There are two ideas inherent to the concept of flow control. One is the modi-
fication of a flow from its natural state to some desired state. This is primarily a
question of physics. The other is the control system required to achieve those mod-
ifications. Since the roles of most of the key parameters are well understood, one
could automate a bifurcating jet with an open-loop control system. Sensing the jet
velocity, a control system could easily calculate the required excitation frequencies.
This system could maintain a bifurcating jet in the presence of variations of the
mean flow. A closed-loop controller would be required to optimize the excitation
to achieve a desired system characteristic or to implement the bifurcating jet in

widely-varying ambient conditions.
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Chapter 7
CONCLUSIONS AND RECOMMENDATIONS

A combined numerical and experimental investigation of bifurcating jets has
been described. The numerical scheme is based on the discrete-vortex method. The
experiment involved dual-mode, dual-frequency, acoustic excitation of round jets
at Reynolds numbers from 10,000 to 100,000. The effects of excitation amplitude,

frequency, and phase and the significance of Reynolds number were considered.

7.1 Conclusions

On the basis of the work described in the previous chapters, several conclusions
can be made that affirm and extend the previous understanding of bifurcating jet

flows. Those conclusions are as follows:

1. Dual-mode acoustic excitation can produce bifurcating jets in air at Reynolds

numbers up to 100,000 and Mach numbers up to 0.22.

2. The structure of the bifurcating jet consists of a Y-shaped jet with adjacent
vortex rings propagating along alternate branches of the jet. This jet spreads at
angles up to 70° in the plane of bifurcation. The characteristic frequency of the
rings on a branch is half that of the rings on the trunk of the jet. The spacing

between rings is about 1.5 times greater on the branch than on the trunk.

3. The bifurcation phenomenon can be modeled as an inviscid, vortex-interaction
process. Axial excitation periodically creates vortex rings. Helical or transverse
excitation causes the rings to be displaced and tilted away from each other. The
array of vortex rings produced by the combination of these two excitations is

unstable as a result of the rings’ mutually-induced motions.

4. Bifurcation occurs only within a range of Strouhal numbers. Within that range,
the spreading angle increases with Strouhal number. The numerical simulations

predict that range to be 0.30-0.42. However, the experiments show that the
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upper limit should be around 0.65. Bifurcation occurs only when the ratio, Ry,

of axial to helical frequency is two.

. The relative phase between the axial and helical signals determines the plane in

which the jet bifurcates. The relative phase between axial and transverse signals

determines whether or not a jet bifurcates.

. The spreading angle increases with both excitation amplitudes. The results

suggest that bifurcation does not occur below certain levels and that jet spread-
ing does not continue to increase beyond certain limits. The bounds of this

amplitude range could not be clearly defined.

For a given nozzle geometry, the required excitation levels increase with Reynolds
number. This 15 partly due to the fact that /D decreases with increasing Re,
resulting in a larger disparity between the imposed and naturally most amplified
frequencies. The increase of mean velocity with Re is another factor. The useful

range of excitation Strouhal numbers is independent of Reynolds number.

7.2 Recommendations

Further study in the area of bifurcating and blooming jets needs to address the

following issues concerning amplitude scaling, receptivity, and competing mecha-

nisms:

1.

Determination of the excitation required under different flow conditions re-
quires formulation and understanding of the scaling parameters. Further work
is nceded to establish how the required helical excitation amplitude and power

scale with jet diameter.

. Since increases in jet velocity require increases in excitation amplitude, produc-

ing the excitation levels required to control high-velocity flows is difficult and
costly. Thus, techniques of enhancing the receptivity of the shear layer to the

excitation signal need to be developed.
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3. Many flows of practical interest involve supersonic velocities, combustion, and
forward flight. The effectiveness of dual-mode forcing in the presence of shock-
shear-layer interactions, additional forcing produced by combustion, large den-

sity gradients, and external flow is not known.

Research in these areas is important not only to provide new insights about the
physics of excited jet flows but also to make practical applications of bifurcating

jets more feasiblc.
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Appendix A
DERIVATION OF INDUCED-VELOCITY FUNCTIONS

A.1 Vortex segment

Consider the point at r and the vortex segment defined by e = r; — rg. Let
r;(§) = ro + e, for 0 < £ < 1. Then by Eqgn. 2.6, the velocity induced by the

vortex segment is given by

r /1 d¢
= ——{r — X e .
u(r) 47r[( o) x | 0 (lr —rg) — fe|? + aa?]3/2

Using the definitions of p and ¢ given in Eqn. 2.10, one can rewrite Eqn. A.1 as

I [(r—rg) xe] 1 d¢
u(r) = ~ar 3 5 T A2
le| 0 [€% —2p€ + ¢°]
Solving the definite integral in Eqn. A.2, one obtains
T - r —r;(n,t)) x
o D[ 0en lleneaed
ar | /(1 —p)2+ 22 ¢ Ale|

where A% = ¢% — p2.

A .2 Circular vortex filament

Consider the point P located at (r,z,8) and a circular vortex filament haviug
radius R and circulation I' and centered at the origin. Applying Eqn. 2.6 and
making use of the symmetry of the filament about the plane defined by P and the

filament’s centerline, one obtains the following components of the induced velocity:

TR n zcosf

Uy = — dé, Ada
" 2r Jo [R?+ 2%+ 1%+ ao? — 2Rr cos 0]3/2
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Uy, = — do, A.4b
e Jo [R? + 22 + r2 + a0? — 2Rr cos §]3/2

and

ug = 0. Adc

Simplifying Eqn. A.4a and A.4b by substitution of the non-dimensional variables
defined in Eqn. 2.13 gives

= ki3 .
v, = (F/R)z/' ( cosf ” A5a
0

 2np3/2 1— fjcos 0)3/2 ’
and
T s
v, = (T'/R) / 1—Fcosé 0. A5h
2753/2 Jo (1 — fjcos§)3/2

Solving the definite integrals in Eqn. A.5 yields

_ (I'/R)z 1 i) - m .
Ur = rrVE T o [(1 —y Bl —m) - KQ ‘)}’ A48
and
__ (/R (-3 p
Uy = Y 7 (1_'27) E(] —m1)+-2—K(1—m1)] , A.6b

where K and E are complete elliptic integrals of the first and second kind and m;

is given by Eqn. 2.13f. These complete elliptic integrals are defined as follows:

/2
K(m) = / d , Alla
0 V1 - msin?#
and
/2 _
E(m) = / V1 — msin® 0 dd. AT
o

Polynomial approximations for K(m) and E(m) are given in Sec. A 4.
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A .3 Semi-infinite cylindrical vortex sheet

Consider a semi-infinite, cylindrical vortex shcet extending along the z-axis from
—oo to 0 and having a circulation per unit length equal to 4. ‘T'he velocity induced

at a point (r, z,8) can be found by adapting Eqn. A.4 to this geometry as follows:

u —15/0 /” (2 = 2) cos b 6 dz' A.8a
r = - ’ :
27 J_Jo [R2+(z—z’)2+r2+a02—2chosﬂ]3/2

0 %
R i R —rcosé ’
uz__%/ / —_oremn Tpdfds, A
—00J0 [R*+ (2—2")*+r° + ao® — 2Rrcos ¥,

and

‘ug = 0. A.8c

Simplifying Eqns. A.8a and A.8b by the dimensionless variables and integrals
defined in Eqns. 2.13, 2.15, and A.7, one obtains

ll,-(i'-,.é) - 2”\/51(’7)’ A.9a
and
oy frf(2-p)
us(F,2) = 2n5{2[\/1‘fﬁ—2+”]

A9

Let ¢ = (m — J)/2. Then by Eqn. 2.15¢c,

1|’/2 1 -2 2
I(7) =2 s 4. A.10
0 1—1+2fjcos?¢

The definite integral in Eqn. A.10 can be split into two definite integrals that match
the complete elliptic integrals (Eqn. A.7) such that

2
Vel

1(7) = K(1-my) — (14 7) E(1 - my)]. A1l
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A.4 Approximations of elliptic integrals

When evaluating K(m) and E(m) numerically, it is valuable to have simple
and accurate approximations for them. The following approximations are from the

Handbook of AMathematical Functions by Abramowitz and Stegun (Dover Press):

K(m) =-1.3862044 +0.1119723m; + 0.0725296m?
A.l12a

= (0.5 = 0.1213478m; + 0.0288729m%) In(1/rmy) + ex (m),
and

E(m) =1 - 0.4620151my + 0.1077812m?
Al2a

- (0.245272Tmy + 0.0412496m?) In(1/my) + eg(m),

where ex(m) < 3 x 1073 lep(m)l < 4 x 1075, and m + my = 1.
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Appendix B
PROGRAM LISTINGS

B.1 BIJET

Chxkrbkkknkkhkkkkkbkkkhbkkkkkhrkkhbkkkh bk kb kb hkbkkrhhkhkhr kb kb krkbek kb kK

Q QO O o O G O O O G o o o aa o aa 30 Qo aa

BIFURCATING/BLOOMING JET SIMULATION

This program uses vortex filaments to simulate 3-D
bifurcating/blooming jets. The calculation uses a vortex
filament technique to represent the vorticity im the jet.
An analytical function is used to account for the vorticity
in the boundary layer in the nozzle. These two components

of the simulation are combined by superposition.

A single filament is used to represent each vortex ring.
The user chooses STNUM (Strouhal number based on axial-
excitation frequency) and FRATIO (frequency ratio, FRATIO =
axial/orbital). The program calculates the corresponding
axial and orbital frequencies of excitation and the

circulation/length of the nozzle function.

Output: Unit 6

Written by: David Parekh
Date: October 1983

Chhkahbkrpkhkhhbhbhhbdhhkbhhkbhhbhbhkb bk kbbb hhbrbhhkbhkhkohbhhkbknbkhkbkhhrkhk

C =

Dimension variables and define common blocks.
DIMENSION RNODE(3,5000),CRAD2(500) ,GAMMA (500)
DIMENSION NSTART(500),NEND(500)

DIMENSION POSNZ(3,1000) ,POSRNG(5,3,64),CENTER(3)
COMMON /CORE/ CRAD2

COMMON /RING/ NPERRG,NRINGS,NNODES,NSTART, NEND
COMMON /MANYPI/ HALFPI,PI,TWOPI

COMMON /PARM/ GAMMA ATPHA CNE®

COMMON /POS/ RNODE
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c

*

Specify constants and parameteres and initialize variables.

DATA ALPHA/0.2065/
PI = 2. =+ ASIN(1.)
HALFPI = PI / 2.

TWOPI = 2
COEF = -1.
AMP = 0.3
NOZEXC = i

SThNUM = 0.32
FRATIO = 2.0

GAM = 1.0

* PI)

!

vorticity-distribution factor

amplitude of nozzle excitation

type of nozzle excitation:

{NOZEXC = 0) => none

(NOZEXC < 0) => sinuscidal flapping
(NDZEXC > 0) => orbital

Strouhal number based on axial frequency
ratio of axial to orbital frequency; must
have integer value </= 18t dim of POSRNG

circulation of ring

VDELT = 2.0 / (GAM * (STNUM*STHUM)) ! time between ring creations

GAMJET = SQRT(2.

PRDO = FRATIC * PRDA

PRDA = 20.
NPRDA - PRDA
YPRDO = PRDO

DELT = VDELT / PRDA
DELT02 = DELT/2.0
NSTEPS = 120

NSPACE = 1000
NEWVTX = NPRDA

“PLOT = 10
ITUT = 10
TIME = 0.0
NRINGS = O
ITH = TOUT

NPTH = NPLOT

INEWV = NEWVTX
NPHASE = FRATIO
INOZ = NPRDO

Print output header.
WRITE(6,100)

* GAM / VDELT)

! circulation/length of jet

period of axial excitation in DELT units

! period of orbital excitation (< dim POSJ)

time step of simulation

totai number of time steps in simulation
time step at which to change SPACE size
see SUBROUTINE GENRNG

see SUBROUTINE PLOT

gc. SUBROUTINE OUTPUT

current number of rings
counter for SUBROUTINE OUTPUT
counter for SUBROUTINE PLOT
counter for SUBROUTINE GENRNG
counter for SUBROUTINE CENRNG
counter for SUBROUTINE RUNGE

FORMAT(’1',9X,' NODE',15X,'X',25X,'Y’,21X,°2',///)
Calculate position of center of jet exit.
CALL NOZPuS(AMP FRDQ,NPRDM NCZEXC, POSNZ)

Specify ring parameters and generate first ring at time zero.

» Specify geometry of ring.

NPERRG = 32

number of nodes per ring
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RAD = 1.0 ! radius of ring

CORE2 = C.01 ! square of the filament core radius

» Generate array of coordinates of initial ring node positions.
CALL RNGPDS(TWGOPI,RAD,NPERRG,NPRDA,FRATIC,POSNZ, FOSR!G)

* Generate 1initial ring.

CALL GENRNG(GAM,CORE2,FRATIO,POSRKG, INEWV,.PHASE, NNODES)

« Print initial coordinates of ring.
CALL GUTPUT(XXODES,TIME K ITH)
Iznitialize plotting routine and plot initial ring.
« Initialize GWE.
CALL IGWE(23)
* Define space boundaries.
CALL SPACE(-0.5,25.0,-3.0,3.0,-3.0,3.0)

« Plot initial ring.

CENTER{1) = POSNZI(1,1)
CENTER(2) = POGNZ{2.1)
CENTER(3) = POSNZ(3,1)

CALL PLOT(NPTH,PLOT,CENTER)
Carrvy out the simulation for NSTEPS time steps.
DG 1000 ISTEP=1,4STEPS
* Increment counters at beginning of time step.
INEWV = INEWV + 1
ITH = ITH +« 1
NPTH HPTH + 1
TIME TIME - DELT
IF(I%0Z 4E.“PRDO) THEY
IN0Z = 1N0Z + 1
ELSE
IN0Z2 = 1

£:D IF

*+ Assign position of center of je: exit.

CELTER(1) = POSNZ(1,1n02)
CENTER(2) = POSNZ(2,1N02)
CENTER(3) = POSNZ(3,1IN0Z)

+ Update node positions by 2nd order Runge-Kutta.
CA'.L RUNGE(DELT,DELTOZ,N!NODES, iPERRG,GAMJET, CELTER)
* Generate a new vortex ring as specified.

IF (IVEWV . EQ.XEWVTX)

& CALL GE'RNG(GAM,CORE2,FRATIO,POSRNG, INEWV, NPHASE,

+ Piint node posi.ions as specified.
IF(ITH.EQ. IOUT) CALL GUTPUT(:ODES,TIME,1TH)

*+ Plot rings as specified

LNODES?

IF(ISTEP EQ . HSPACE) CALL SPACE(-0.5,50.0,-5.0,5.0.-5.0,5.0)
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IF(NPTH.EQ.NPLOT) CALL PLOT(NPTH,NPLOT,CENTER)
1000 CONTINUE
C » Specify end of plotting file.
CALL FLASH
STOP
E!D

SUBROUTINKE RNGPOS(TWOPI,RAD,NPERRG,NPRDA,FRATIO,POSKZ, POSRNG)
cceceeceeeeceeeccececceececcececceecceeececccececcceecceeccceecececcecccecceeccecccece

This subroutine (SUBROUTINZ RNGPOS) calculates the various
initial positions of the ring filaments and assigns these
coordinates to the array POSRNG. POSRNG is a three-dimensional
array. Its first index designates one of FRATIO possible

filament locations. The second index designates a coordinate

g0 O a o a a

direction, and the last index corresponds to the particular

«

nodes. Thus, POSR!G(2,1,23) contains the x-coordinate of
the 23 node on the filament that is generated at position 2.
The various filament positions correspond to the index I im

c
c
C D0-loop 20 in the subroutine.
¢

Cccceeeceeeceeceeeceeceececcececcececececececececeecececcceeeceeccceceecececceccceececececceccccecce
DIMENSION POSRNG(S5,3,64) ,POSNZ(3,1000),CIRCLE(3,64)
C =* Calculate the coordinates of a circle of radius RAD, centered
c about the or:zin in the Y-Z plane.
SECT = NPERRG
THETA = TWOPI / SECT
DO 10 L=1,NPERRG
DIV=L -1
ANGLE = DIV = THETA
CIRCLE(1,L) 0.0
CIRCLE(2,L) RAD * COS(ANGLE)
CIRCLE(3,L) = RAD * SIN(ANGLE)

10 CONTINUE
C =* C(Calculate the position of the filament nodes.
IT = FRATIO ! assumes FRATIO has an integer value
K=1 ! K designates which coordinate in array POSNZ

! is the nozzle position corresponding to POSRNG
DO 20 I=:,1I
DO 21 J=1,NPERRG
POSRNG(I,1,J) = POSNZ(1,K) + CIRCLE(1,J)
POSRNG(I,2,J) = POSNZ(2,K) + CIRCLE(2,J)
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POSRNG(1.3,J) = POSNZ(3,K) + CIRCLE(3,J)
21 CONTINUE
K = K + NPRDA
20 CONTINUE
RETURN
END

SUBROUTINME GENRNG(GAM,CORE2,FRATIO,POSRNG, INEWV,NPHASE)
cceecceeccececeecececeeecceeececeeecccceccceceeccecceceecececcecceecccceecceccceccecceccce

This subroutine (SUBROUTINE GENRNG) specifies the initial
coordinates and core size of the nodes on the newly created

vortex ring.

aQ O QO 0

cceeeeeeeceeceeccceecceccceececceceeececceeceeccceeeccceececeeceecceceeccceccecce
DIMENSION RNODE(3,5000),CRAD2(500) ,NSTART(500),NEND(500),
& GAMMA (500) ,POSRNG(5,3,64)
COMMON /CORE/ CRAD2
COMMON /RING/ NPERRG,NRINGS,NNODES,NSTART, NEND
COMMON /PARM/ GAMMA,ALPHA,COEF
COMMON /P0S/ RNODE
C =+ Iritialize and increment counters.
INEWV = 0O
NRINGS = NRINGS + 1
NNODE8 = NPERRG*NRINGS
NRATIO = FRATIO
IF (NPHASE . NE.NRATIO) THEN
NPHASE = NPHASE + 1
ELSE
NPHASE = 1

END IF
C =* Specify node numbers, circulation, and core radius of rimg NRINGS.
NEND(NRINGS) = NNODES
NSTART(NRINGS) = NNODES - NPERRG + 1
GAMAA(NRINGS) =~ GAM
Chao2(NRINGS) = COREZ2
C =* Specify the initiai coordinates of the nodes of ring NRINGS.
NSN = NSTART(NRINGS)
NEN = NEND(NRINGS)
INDEX = (NRINGS - 1) = NPERRG
DC 10 I=NSN,NEN
K =1 - INDEX
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RKODE(1,1)
RNODE(2,1)
RNODE(3,1)
10 CONTINUE
RETURY
END

POSRNG (NFHASE, 1,K)
POSRNG (NPHASE, 2,K)
POSRNG (NPHASE, 3,K)

[]

UBROUTINE NOZPOS(AMP,PRDO,NPRDO,NOZEXC, POSNZ)
céceceeecceeecccceecececceccecceeecceccececccececccececccecceecceeccecccecccecece
4
This subrcutine (SUBROUTINE NQOZPOS) calculates the position
of the center of the jet exit as a function of time step and
the type of excitation specified by NOZEXC. This subrcutine

also assigns the calculated positions to the array POSNZ.

A O Q G a

CLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee
DIMENSION POSNZ(3,1000)
COMMON /MANYPI/ HALFPI,PI,TWOPI
C =+ Calculate jet center positions.
THETA = TWOPI / PRDO
IF (NOZEXC.GT.0) THEN
DO 10 I=1,NPRDO
DIV=1-1
ANGLE = DIV *= THETA
POSNZ(1,1I) = 0.0
POSNZ(2,I) = AMP*COS(ANGLE)
POSHZ(3,1I) = AMP*SIN(ANGLE)
10 CONTINUE
ELSE IF(NOZEXC.LT.Q)THEN
DO 20 I=1, NPRDO
DIV =1 -1
ANGLE = DIV & THETA

POSNZ(1,I) = 0.0
POSNZ(2,1I) = AMP*COS(ANGLE)
POSNZ(3,I) = 0.0
20 CONTINUE
ELSE

DO 30 I=1,NPRDO
POSNZ(1,I) = 0.0
pPOSNZ(2,I) = 0.0
POSNZ(3,1) = 0.0
30 CONTINUE
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END IF
RETURN
END

SUBROUTINE OUTPUT(NNODES,TIME, ITH)
cceeeeeeceeeccececcecececcce .cececceeeceeecceeccccececececcecececcececcecccecerccecce

C

c This subroutine (SUBROUTINE OUTPUT) writes the coordinates of
¢ the nodes to UNIT 6 every IOUTth time step.

C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCreee

DIMENSION RNODE(3,5000)
COMMON /P0S/ RNODE
ITH = 0
WRITE(6,200) TIME
WRITE(6,201) (J,(RNODE(K,J), K=1,3), J=1 NNODES)
WRITE(6,202)

200 FORMAT(10X,'TIME = ',F6.3./)

201 FORMAT(10X,I6,5X,F19.14,5X,F19.14 56X ,F19.14)

202 FORMAT{1X,/}
RETURN
END

SUBROUTINE PLOT(NPTH,NPLOT,CENTER)
cceceeeeeceecececceeceeceeeecccecceeececeecceecececccccceeecececcececceceeccecece

C This subroutine (SUBROUTINE PLOT) generates a frame of data
c for the Evans and Sutherland every NPLOTth time step.
c

ceceeeceeeceeeececececececccecccecececccecceceecececececceccececceccceeccccecececcecce
DIMENSION RNODE(3,5000),NSTART(500),NEND(500),
& CENTER(3) ,SCRTCH(45),
& COOR(3075) ! Good for NPERRG < 1025
COMMON /P0S/ RNODE
COMMON /RING/ NPERRG,NRINGS,NNODES,NSTART,NEND
NPTH = 0
C =+ Plot a small sphere to mark the origin.
CALL COLOR(0)
RHO = 0.1
HVSEC = 4
NHSEC = 4
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IPTS = 15
MODE = O
CALL SPHERE (CENTER,RHO,NVSEC,NHSEC,SCRTCH,IPTS,MODE)
C * Draw NRINGS rings with NPERRG nodes.
CALL COLOR(4)
DO 100 NR=1,NRINGS
C * =» Assign node positions to plotting array.
I=1
NSN = NSTART(NR)
NEN = NEND(NR)
DO 110 J=NSN,NEN
CODR(I) = RNODE(1,J)
COOR(I+1) = RNODE(2,J)
COOR(I+2) = RNODE(3,J)
I=1+3
110 CONTINUE
COOR(I) = RNODE(1,NSN)
COOR(I+1) = RNODE(2,NSN)
COOR(I+2) = RNGDE(3,NSN)
C * =+ Draw ring(s).
NPTS = NPERRG + 1
CALL DRAW3D(COOR,NPTS,2,2)
100 CONTINUE
CALL FRAME
RETURN
END

subroutine runge(Delt,Delt02,NNodes, NPerRg,GamJet, Center)
ccecececcccececcceecccececceccccecceeccceececceccccceccececcececccececcecececccecccce

FUNCTION:
This subroutine (SUBROUTINE RUNGE) calls SUBROUTINE INDVEL
to calculate the filament-node velocity induced by the
filaments in the flow field. The node positions at the end
of the time step are caluculated by 2nd order Runge-Kutta.

READ-ONLY PARAMETERS:
Delt -> time step
Delt02 -> half of a time step
NiNodes -> total number of nodes in simulation
NPerRg -> number of nodes per ring

QO O O QO QO G O a G a G 0

GCamJet -> circulation of jet function
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Center -> current position of center of jet exit

AUTHOR:
David Parekh  (July 1983; revised: July 1984)

aQa Q o o o

gceeeeececeeececcceccceceeeccecececcceccceecccceceececccccecccececcececececccecececcceceecccece
dimension RNode(3,5000) ,RNew(3,5000),RRef(3),Center(3),
& VelInd(3,5000),VelJet(3,5000),VelRef (3),CRad2(500)
common /P0S/ RNode
common /CORE/ CRad2
C * Predict using the Euler method.
C * * Calculate node velocities due to mutual induction.
call indvel(RNode,VellInd)
C + * Calculate node velocities due to jet function.
do 10 N = 1,NNodes
RRef (1) = RNode(1,N)
RRef (2) = RNode(2,N)
RRef(3) = RNode(3,N)
Index = ((N - 1) / NPerRg) + 1
CRef2 = CRad2(Index)
call jetvel(GamJet,RRef,CRef2,Center,VelRef)
VellJet (1,N) = VelRef(1)
VelJet (2,N) = VelRef(2)
Vellet (3,N) = VelRef(3)
10 continue
do 100 N = 1,NNodes
RNew(1,N) = RNode(1,N) + (DeltD2 * (VelInd(1,N) + Vellet(1,N)))
RNew(2,N) = RNode(2,N) + (Delt02 * (VelInd(2,N) + VelJet(2,N)))
RNew(3,N) = RNode(3,N) + (Delt02 * (VelInd(3,N) + Vellet(3,N)))
100 continue
C * Correct using the midpoint rule.
C * = (Calculate node velocities due to mutual induction.
call indvel{RNew,Vellnd)
C * = Calculate node velocities due to jet function.
do 20 N = 1,NNodes
RRef (1) = RNew(1,N)
RRef (2) = RNew(2,N)
RRef(3) = RNew(3,N)
Index = ((N - 1) / NPerRg) + 1
CRef2 = CRad2(Index)
call jetvel(GamJet,RRef,CRef2,Center,VelRef)
VelJet(1,N) = VelRef(1)
VelJet(2,N) = VelRef(2)
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VelJet(3,N) = VelRef(3)
20 continue
do 200 N = 1,NNodes
RNode(1,N) = RNode(1,N) + (Delt * (VelInd(i,N) + VelJet(1,N)))
RNode (2,N) = RNode(2,N) + (Delt * (VelInd(2,N) + Vellet(2,N)))
RNode(3,N) = RNode(3,N) + (Delt * (VelInd(3,N) + VellJet(3,N)))
200 continue
return

end

subroutine indvel(RNode, VelInd)
cceeeececceceeceeeceeececceeecceceeceecceccceceeccececcecccecccceccececcccececececcceccceccce

c

c FUNCTION:

c This subroutine (SUBROUTINE INDVEL) calculates the filament-

c node velocity induced by the vortex filaments in the flow

c field. The segments joining each pair of nodes is a straight
¢ line. The vorticity is distributed about the filament as

c specified by a spherically symmetric polynomial. The nodes

c are grouped in rings. The innermost loop calculates the

C velocity induced by a particular segment.

c

C  READ-ONLY PARAMETERS:

c RNode -> the coordinates of each node

C

C WRITE-ONLY PARAMETERS:

c VelInd -> the node velocities induced by the filaments

c

C  AUTHORS:

c David Parekh & Tony Leonard (July 1983; revised: July 1984)
c

cceeecececeeccceeeceeceececcecececeecceccceececcececececcccccecceccecccececececcececceccee
C #* Dimension variables and define common block.
dimension VelInd(3,5000),RNode(3,5000),CRad2(500),
Camma (500) ,NStart (500) ,NEnd (500) ,
DR(3) ,RDif (3) ,RDEfXDR(3)
common /CORE/ CRad2
common /PARM/ Gamma,Alpha,Coef
common /RING/ NPerRg,NRings,NNodes,NStart,NEnd
C % Initialize velocity vector.
do 100 N = 1, NNodes
VelInd(i,N) = 0.0
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VelInd(2,N) = 0.0
Vellnd(3,N) = 0.0
100 continue
€ =+ Calculate the induced velocities by solving the Biot-Savart integral.
do 200 NR = 1,NRings
Gam = Gamma(NR)
NTail = NEnd(NR)
CNR2 = CRad2(NR)
do 210 NHead = NStart(NR),NEnd(NR)
DR(1) = RNode(1,NHead) - RNode(1,NTail)
DR(2) = RNode(2,NHead) - RNode(2,NTail)
DR(3) = RNode(3,NHead) - RNode(3,NTail)
do 211 N = 1,NNodes
RDif (1) = RNode(1,N) - RNode(1,NTail)
RDif (2) = RNode(2,N) - RNode(2,NTail)
RDif (3) = RNode(3,N) - RNode(3,NTail)
RDif2 = (RDif(1) * RDif(1)) + (RDif(2) * RDif(2)) +
& (RDif (3) * RDif(3))
DR2 = (DR(1) = DR(1)) + (DR(2) * DR(2)) + (DR(3) #* DR(3))
RDifDR = (RDif (1) * DR(1)) + (RDif(2) = DR(2)) +
& (RDif (3) * DR(3))
Index = ((N - 1) / NPerRg) + 1
BSDen = RDif2 + (Alpha * (CNR2 + CRad2(Index)))
C1 = (BSDen + DR2) - (RDifDR + RDifDR)
¢2 = ((DR2-RDifDR) / sqrt(C1)) + (RDifDR / sqrt(BSDen))
€3 = €2 / ((DR2 * BSDen) - (RDifDR * RDifDR))
RDEXDR(1) = (RDif(2) * DR(3)) - (RDif(3) *= DR(2))
RDfXDR(2) = (RDif(3) * DR(1)) - (RDif(1) * DR(3))
RDEXDR(3) = (RDif(1) * DR(2)) - (RDif(2) * DR(1))
VelInd(1,N) = VelInd(i,N) + (C3 * Gam * RDfXDR(1))
VelInd(2,N) = VelInd(2,N) + (C3 * Gam * RDfXDR(2))
VelInd(3,N) = VelInd(3,N) + (C3 * Gam * RDfXDR(3))
211 continue
NTail = NHead
210 continue
200 continue
do 300 N = 1, NNodes
VelInd(1,N) = Coef * VelInd(i,N)
VelInd(2,N) = Coef * VelInd(2,N)
VelInd(3,N) = Coef * VelInd(3,N)
300 continue
return

end
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subroutine jetvel(GamJet,RRef,Core2,Ceanter, VelRef)

cccgeecececececceceeecccecceeceeeceececccecceceececcecceccececcceccceecccceccececcccceee

QO O G o a Q

This subroutine (SUBROUTINE JETVEL) calculates the velocity
induced a% the point (R,Z) by » semi-infinite shoet of
vorticity. Analytical expressions (FUNCTION RVFUNC and
FUNCTION ZVFUNC) for the velocity field of a semi-infinite

sheet of vorticity are used.

cceceeeececeeecceeecccecceeccceceececccccceccececceccececcccccccccceccceccceeccce

dimension RRef (3) ,VELREF(3),Center(3)

real Mu,Nu

Assign values of distribution factor, and core radius squared
of vortex sheet.

DATA ALPHA,SIGMA2 /0.2065,0.01/

Transform position vector RREF to RVFUNC-&-ZVFUNC coordinates.
X = RREF(2) - CENTER(2)

Y = RREF(3) - CENTER(3)

R = SQRT((X*X) + (Y*Y))

Z = RREF(1) - CENTER(1)

Calcualte velocity function arguments.

RHO = 1. + (R * R) + (ALPHA * (SIGMA2 + CORE2))
NU = RHO + (Z *= Z)

MU = 2. =* (R / RHO)

ETA = 2. * (R / NU)

Calculate the induced velocity.

RVEL = RVFUNC(NU,ETA,GAMJET)

ZVEL = ZVFUNC(R,Z,RHO,MU,NU,ETA,GAMJET)

VELREF (1) = ZVEL

VELREF (2) = (X * (RVEL/R))

VELREF(3) = (Y = (RVEL/R))

RETURN

END

FUNCTION RVFUNC(NU,ETA,GAM)

cceeceeccceeceececceccecccccecceeccccecccecccccceccccceccceecccecceccceccce

c
c
c

This function computes the r-component of velocity.

¢ceeccececceeccececececceccececcecccecccececceeceeccccceecccccccececcceccceccccce

REAL I, NU
COMMON /MANYPI/ HALFPI,PI,TWOPI
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COEF = GAM / (2. = PI = SQRT(NU))
IF(ETA.GT.0.05) THEN
RVFUNC = COEF * I(ETA)
ELSE
RVFUNC = COEF *= T(0.,ETA)
END IF
RETURN
END

FUNCTION ZVFUNC(R,Z,RHO,MU,NU,ETA,GAN)

cceeeeeceeecceceeececececcceecceececcecececcecccceccccceceecececccccceccceccceccecce

c
c
c

This function computes the z-component of velocity.

ccececeeeecceecceecececeececccceeccecececcecccccccceccccccceccceccccecececcecccecececce

REAL K,M1,MU,NU

COMMON /MANYPI/ HALFPI,PI,TWOPI

M1 = (1. - ETA) / (1. + ETA)

COEF = GAM / (TWOPI * RHO)

A = HALFPI * (((2. - RHO) / SQRT(1. - MU+MU)) + RHO)
Bl = (2./SQRT(1. + ETA)) = K(M1)

B2 = (MU - R) * T(MU,ETA)

ZVFUNC = COEF * (A - ((Z/SQRT(NU)) =+ (B1 + B2)))
RETURN

END

FUNCTION T(MU,ETA)

ccceeeecceecceccecceecccceccececcccecceeccecceccceccecececcecceccccecccccecccece
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This function calculates the value of the Terry functiom for
specified values of MU and ETA by means of the a 4-panel
Newton-Cotes scheme (SUBROUTINE DNC4). N is a parameter of
DNC4.

cceeeeccececeeccceecccececcececcceecceccececcceeccccecccceccccceececccececceccece

REAL MU

COMMON /TERRY/ TMU,TETA

COMMON /MANYPI/ HAvLrPI,PI1,TWOPI
EXTERNAL TFI

TMU = MU

TETA = ETA
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N =3, + (6.%MU) + (3.%ETA)
T = DNC4A(TFI,O.,PI,N)

RETURN

END

FUNCTION TFI(PHI)
giceeeecececeecececeeccceccececccececceccccececceeccceecccececcecccccccecccccec
c

c This subroutine defines thz Terry function integrand.

c

LCCCCCCCCOCCelisauuntigucceecececcececeecceeccecccecececcceccecceecccecceccccececcece
REAL MU

COMMON /TERRY/ TMU,TETA

COSPHI = COS(PHI)

TFI = COSPHI / ((1.DO - TMU+COSPHI) *
& SQRT(1.DO ~ TETA#*COSPHI))
RETURN

END

FUNCTION DNC4(TFI,A,B,N)
CCCCCCCCCCECCCCCCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCrCCCCCCCCCCCC

This subroutine integratea the function TFI from A to B by

a modified 4-panel Newton-fotes scheme. The points where TFI
is evaluated were chosen to give the greatest resolution at
the ends of the intervals. N is the initial step size
criterion, where HO = (B-A)/(2#**N) and N > 2.

Written by: David Parekh
Date: August 1983

G a O a o o ag ag a0
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C =* Calculate initial step size and loop parameter.
EXP = N
FRAC = 2.»*EXP
HO = (B-A)/FRAC
IEND = N - 3
C =* Integrate using a modified 4-panel Newton-Cotes formula.
¢ * * Integrate first subinterval.
H = HO
PHI1 = A
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PHI2 = PHI1 + H
PHI3 = PHI2 + H
PHI4 = PHI3 + H
PHI5 = PHI4 + H

TFI6 = TFI(PHIS)

SUM = (H/22.5) * (7.+#TFI(PHI1) + 32.sTFI(PHI2) +
12.+TFI(PHI3) + 32.*TFI(PHI4) + 7.+TFI5)
Integrate the rest of the first half of the interval,

doubling H every subinterval.

DO 10 I=1,IEND
TFI1 = TFIS
PHI1 = PHIS
PHI2 = PHI1 +
PHI3 = PHI2 +
PHI4 = PHI3 +
PHIS = PHI4 + H
TFI5 = TFI(PHIS)

SUM = SUM + ((H/22.B) * (7.sTFIi +
32.+TFI(PHI2) + 12.+«TFI(PHI3) +
32.+TFI(PHI4) + T.+TFI5))

[ -~ -

H=2.*H
CONTINUE
Integrate the last subinterval.
H = HO
PHI6 = B
PHI4 = PHIb - H
PHI3 = PHI4 - H
PHI2 = PHI3 - H
PHI1 = PHI2 - H

TFI1 = TFI(PHI1)
SUM = SUM + ((H/22.5) = (7.+TFI1 +
32.*TFI(PHI2) + 12.+TFI(PHI3) +
32.*TFI(PHI4) + 7.+TFI(PHI5B)))
Integrate the rest of the last half of the interval.
DO 20 I=1,IEND
TF15 = TFI1
PHIS = PHI1
PHI4 = PHIS -
PHI3 = PHI4 -
PHIZ = PHI3 -
PHI1 = PHI2 - H
TFI1 = TFI(PHI1)
SUM = SUM + ((H/22.5) * (7.%TFI1 +

XX om X
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X 32.+TFI(PHI2) + 12.sTFI(PHI3) +
& 32.+TFI(PHI4) + 7.*TFI16))
H = 2. sH
20 CONTINUE
DNC4 = SUM
RETURN
END

REAL FUNCTION I(ETA)
cecceecceeceeeeceecceececeececececeecececececcecececcecececcecccecccececceccceccceeccee
c

c This function is a combination of the elliptic integrals X & E.
c
cceeeeceeeececceceeecececeeccececececceeecceceeeececececececceccececececececceececcee
REAL K M1
M1 = (1. - ETA) / (1. + ETA)

COEF = 2. / (ETA = SQRT(ETA + 1.))

I = COEF * (K(M1) - ((1. + ETA) *= E(M1)))
RETURY

EYD

REAL FUNCTION K(M1)
c¢ceeeceececeececcececeeccceeccccecccececcccecececececcceccececcececcccccceccccece

This function is a polynomial approximation of the complete
elliptic integral of the first kind (from HMF 17.3.33) with
e(m1) < 3E-6.

O G O a0

CCCCCCCCCLTTTCACCRCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
REAL M1
DATA AO, A1, A2 /1.3862944, 0.1119723, 0.0725296/
DATA BO, Bi, B2 /0.5, 0.1213478, 0.0288729/
K = (AO+(M1=(A1+(M1#A2)))) + ((BO+(M1*(B1+(M1%B2))))=*AL0OG(1./M1))
RETURN
END

FUNCTION E(M1)
geeeeeeecececeeeccececeeceeccecccececcecccecceccccececcecceccececceccecceccceccee
c
c This function is a polynomial approximation of the complete
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¢ elliptic integral of the second kind (from HMF 17.3.35) with

c e{mi) < 4E-6.

c

gcceeecceceeeecececcceceececeeccccecceecececcccceccccececeececcececcccececcccceccece
REAL M1, 6M12

DATA A1, A2 /0.4630151, 0.1077812/

DATA B1, B2 /0.2452727, 0.0412496/

E = (1.+(M1*(A1+(M1%A2)))) + ((M1+(B1+(M1+B2)))=+ALOG(1./M1))
RETURN

END

B.2 AXLAYER

Crrkrdrbdsbskkdbbthdbbbbkhddbhbbhhb b srbbrb bk hkrbbbbhbhhhkbkhbhhbkhbhbhkk

AXISYMMETRIC RINGS

This program uses analytical expressions to calcualte
the motion of axisymmetric, incompressible, inviscid
vortex rings. The boundary condition at the location of
creation of the rings is imposed by a jet function. The jet
function specifies the velocity field induced by a semi-

infinite axisymmetric sheet of vorticity.

Output: Unit 10

Written by: David Parekh
Date: September 1984

Q QO O O o0 a0 o a Q g o o oo
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C +* Define logical variables, common blocks and output unit.
logical Image,CorCon
common /JET/ ALPHA, GamJet, Cr2Jet
common /PARM/ SigmaZ{1C000),3am{10CC],C.x2I(1200),GamI(1000)
common /P0S/ RPos(1000),2Pos(1000) ,RPosI(1000),ZPosI(1000)
common /RING/ GamRng, CORE, RAD, VOLUME
open(unit=10,file="RESULTS")

C + Specify constants and parameters.

Image = .TRUE. ! specifies whether images are to be included
CorCon = .TRUE. ! specifies whether cores are constant in time
GAMJ = 1.0 ! nominal circulation/length of jet
RAD = 1.0 ! nominal radius of rings
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CORE = 0.1 ! nominal core radius of rings

STHUM = 0.4 ! Strouhal number based on axial frequency
NSTEPS = 400 ! total number of time steps in simulation
PRDA = 100. ! period of axial excitation in DELT units
PRDF = 10. ! period of filament generation in DELT units
AXAMP = 0.2 ! amplitude of axial excitation / GAMJ

IOUT = 6 ! time steps between calls to "output"

NEWVTX = PRDF ! time steps between calls to "genRng"

call initJet

ExFac = 1. + (AXAMP**2) / 2 { excitation factor

AxFreq = 4 * asin(1.) / PRDA ! axial frequency (rad / step)
FPerA = PRDA / PRDF ! filaments per axial period
VDelT = 2 / (GAMJ * FPerA * STNUM) ! time between ring creations
DelT = VDelT / PRDF ! time step of simulation

DelT02 = DelT / 2

GamDot = GAMJ*#s2 / 2 ! nominal circulation flux rate
CIRC = ExFac * VDelT * GamDot ! nominal circulation of rings
VOLUME = RAD * CORE#*»*2 ! nominal volume of rings

Coefl = 2 * AXAMP * DelT / AxFreq
Coef2 = AXAMP / 8
Initialize counters.
IlewV = NEWVTX
Ith = IOUT
NRings = O
Time = 0.0
Print output header.
write (10,100) CIRC,RAD,CORE,GAMJ, 6 AXAMP,STNUM,DelT,FPerA
if (I{mage) then
write(10,110)
else
write(10,120)
end if
Carry out simulation for NSTEPS time steps.
do 1000 IStep = 1,NSTEPS
+ Calculate instantaneous circulations of jet and filament.
Phi0 = AXFREQ * (IStep - 1)
Phil = PhiO + AXFREQ * PRDF
GamJet = (1. - AXAMP #* cos(PhiO)) * GAMJ
GamRng = GamDot * (ExFac * VDelT + Coefl *
(Coef2 *+ (8in(2 * Phil) - sin(2 * PhiO)) -
(sin(Phil) - sin(Phi0))))
GamJet = (1. - AXAMP * cos(AXFREQ * (IStep - 1))) * GAMJ

* Generate a new vortex ring as specified.
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if (INewV.eq.NEWVTX) then
call genRng(Image,INewV, K NRings)
PhiO = AXFREQ * (IStep - 1)
end if
RelStp = INewV + 1
Phil = Phi0 + AXFREQ * RelStp
Gam(NRings) = GamDot * (ExFac * DelT * RelStp + Coefl *
(Coef2 * (sin(2 * Phil) - 8in(2 * PhiO)) -
(sin(Phi1) - 8in(Phi0))))
GamI(NRings) = -Gam(NRings)
C » =* Print ring positions as specified.
if (Ith.eq.IDUT) call output(NRings,Time,Ith)
C =+ =* Update node positions by 2nd order Runge-Kutta.
call runKut(NRings,DelT,DelT02,CorCon, Image)
C * =+ Increment counters at end of time step.
INewV = INewV + 1
Ith = Ith + 1

Time = Time + DelT

- EG = e
R

1000 continue
C = Write final coordinates of rings.
CamJet = (1. - AXAMP * cos(AXFREQ * IStep)) * GAMJ
c if (INewV.eq.NEWVTX) call genRng(Image,INewV,NRings)
if (INewV.eq.NEWVTX) then
call genRng(Image,INewV,NRings)
Phi0 = AXFREQ * (IStep - 1)
end if
RelStp = INewV + 1
Phil = Phi0 + AXFREQ * RelStp
Gam(lNRings) = GamDot * (ExFac * DelT * RelStp + Coefl *
(Coef2 * (8in(2 * Phii) - sin(2 * PhiO)) -
& (sin(Phil) - sin(PhiO))))
GamI(}Rings) = -Gam(NRings)
call output(NRings,Time, Ith)
close(10)
C * I/0 formats.
100 format(ix,'Circulation =',%17,f7.4,/,
1x, 'Ring Radius =’,t17,16.2,/,
1x,'Core Radius =',t19,16.4,//,
1x,'Jet Circulation =',t20,£8.4,/,
1x,'Axial Excitation =',t20,£8.4,//,
ix,'Strouhal Number =',t20,f8.4,/,
1x,'Time Step =',t21,f8.5,//,
1x,'Filaments per Pulse =',t23,£5.0,///)

& R R A& & R
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110 format(lx,'s** Images included in simulation **x',///)

120 format(1lx,'*** Images not used in simulation *%+°' ///)

stop
end

subroutine genRng(Image, INewV,NRings)

cccceceeeeeccececeeeeccceccceceeccccecceccececceeecceceecceccecceccececececccceeceececce
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This subroutine (SUBROUTINE GENRNG) specifies the coordinate
of the center of the newly generated vortex ring and assigns

the circulation and core radius of the new ring.

ceceeeeeecceeceecececececececceccceeccceccccecccceecccceccceccecccecececcceeccce

c

*

Define variables and common blocks.
logical Image
common /PARM/ Sigma2(1000),Gam(1000),Sig2I(1000) ,GamI(1000)
common /P0S/ RPoe{(1000),ZPos(1000) ,RPosI(1000),ZPosI (1000)
common /RING/ GamRng, CORE, RAD, VOLUME
Initialize and increment counters.
INewV = O
NRings = NRings + 1
Specify ring parameters.
RPos (NRings) = RAD
ZPos(NRings) = 0.0 + CORE
Gam(}NRings) = GamRng
Sigma2(NRings) = CORE**2
Specify image ring if required.
if (Image) then
RPosI(NRings) = RAD
ZPosI(NRings) = 0.0 ~ CORE
GamI(NRings) = -GamRng
8ig2I(NRings) = CORE*#2
end if

return

end

subroutine output(NRings, Time, Ith)

ceeeeeeccceeeccceccccceecceccececceccecceccececcececccecceccecccecceecceccececcee

c

c

c

This subroutine (SUBROUTINE OUTPUT) writes the coordinates of
the centers of the vortex rings and their radii to UNIT 10
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C every IOUTth time step.
c
cceeceeeeeeceeeccececeecccececeeececcecceceececceccecccecceecccecccceecececeecceece
C * Define variables and common blocks.
common /JET/ ALPHA, GamJet, Cr2Jet
common /PARM/ Sigma2(1000),Gam(1000),8ig2I(1000},GamI(1000)
common /P0S/ RPos(1000),ZPos(1000),RPosI(1000),ZPosI(1000)
C *= Reset counter.
ITH = 0
C « Write results.
Write(10,200) Time,GamJet,sqrt(Cr2Jlet)
Write(10,201)
Write(10,202) (J,RPos(J),ZPos(J),eqrt(Sigma2(J)),Gam(J),
& J=1,NRINGS)
Write(10,203)
C + Format statements.
200 Format(1X,'TIME = ',F9.3,//,
ix,'GAMJET = ' ,F7.3,/.
ix, 'CORE OF JET = ®',F10.6./)
201 Format(1X,' RING',8X,'RADIUS',12X,'Z',12x, 'CORE RADIUS’,
& 6x, ’CIRCULATION",//)
202 Format(1X,I15,5X,F10.5,5X,F10.5,10X F10.5,10x,F10.5)
203 Format{1X,/)

return

end

subroutine runKut (}NRings,DelT,DelT02,CorCon, Image)
CCcceeeeeeeeeececeececececceececaceeececeeccecececeececceeccececceceeccecececececccececececceececccececce
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c This subroutine (SUBROUTINE RUNKUT) calls SUBROUTINE VELOCITY
C to calculate the induced velocity at a particular node point
c and calculates the node positions at the next time step by

C 2nd order Runge-Kutta.

c

%)

ceeeeeeeeceeeceececcecccceecceececcccccecceeceeccccecccccceccceeccceccecccece

« Dimension variables and define common block.

(]

logical Image,CorCon
dimension RRunge(1000), ZRunge (1000)
common /P0OS/ RPos(1000),ZPos(1000) ,RPosI(1000),ZPosI(1000)
common /VEL/ RVel(1000), ZVel (1000)
C + Predict using the Euler method.
call velocity(liRings,Image)
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100

110

200

210

do 100 NR = 1 NRings
RRunge (NR) = DelTO2 * RVel(NR)
ZRunge (NR) = DelT02 * ZVel(NR)
RPos (NR) = RPos(NR) + RRunge(}NR)
ZPos(NR) = ZPos(NR) + ZRunge(NR)
continue
if (Image) then
do 110 NR = 1,NRings
RPosI(NR) = RPos(NR)
ZPosI(NR) = -ZPos(NR)
continue
end if
if (.not.CorCon) call newCore(NRings, Image)
Correct using the midpoint rule.
call velocity(NRings,Image)
do 200 NR = 1 NRings
RRunge (NR) = DelT * RVel(NR) - RRunge(NR)
ZRunge(NR) = DelT * ZVel(NR) - ZRunge(NR)
RPos(NR) = RPos(NR) + RRunge(NR)
ZPos (NR) = ZPog{(NR) + ZRunge(NR)
continue
if (Image) then
do 210 NR = 1,NRings
RPosI(NR) = RPos(NR)
ZPosI(NR) = -ZPos(NR)
continue
end if
if (.not.CorCon) call newCore(lRings, Image)
return

end

subroutine velocity(NRings, Image)

FUNCTION:

To calculate the velocity and stretching of rings due to
the influence of the rings and the sheet of vorticity.
The influence of image rings are included as specified.

AUTHOR:

David Parekh (0ctober 1984)
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C =* Dimension variables and define common block.

logical Image
comron /PARM/ Sigma2(1000),Gam(1000),5ig2I(1000),GamI(1000)
common /P0S/ RPos(1000),ZPos(1000) ,RPosI(1000),ZPosI(1000)
common /VEL/ RVel(1000), ZVel(1000)
C =+ Ca'culate velocities induced by jet.
do 100 NR = 1,NRings
call jetVel{(RPos(NR),ZPos{(NR),h Sigma2(NR) ,RVel(NR),6ZVel(NR))
100 continue
C #* Calculate velocities induced by other rings.
do 200 HR = 1 ,NRings
do 210 IR = 1,NRings
ZDif = ZPos(IR) - ZPos(MNR)
call rngVel{(RPos(lR),Gam(NR),Sigma2(NR) ,RPos(IR),ZDif,
& Sigma2(IR),VelInR,VelInZ)

RVel(IR) = RVel(IR) + VellnR
ZVel(IR) = ZVel(IR) + VellnZ
210 continue

if (Image) then
do 220 IR = i,NRings
ZDif = ZPos(IR) - ZPosI(NR)
call rngVel(RPosI(NR),GamI(NR),Sig2I(NR),RPos(IR),2Dif,
& Sigma2(IR),VellnR,VelInZ)

RVel(IR) = RVel(IR) + VellnR
ZVel(IR) = ZVel(IR) + VellnZ
220 continue
end if
2C0 continue
return
end

subroutine newCore (liRings, Image)
ccececeeeceeccececececceeccccecececcceeceecceccecccececececcccececcccececccececceccece

FUNCTION:
To calculate the core size of the rings based on conservation

of volume consgtraints.

AUTHOR:
David Parekh  (September 1984)

Q O O O G o
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c

*

100

110

Define variables and common blocks.
logical Image
common /PARM/ Sigma2(1000),Gam(1000),Sig2I(1000),GamI(1000)
common /P0S/ RPos(1000),ZPos(1000),RPosI(1000),ZPosI(1000)
common /RING/ GamRng, CORE, RAD, VOLUME
Calculate new core sizes.
do 100 NR = 1 ,NRings

Sigma2(NR) = VOLUME / RPos(NR)
continue
if (Image) then

do 110 NR = 1 ,NRings

Sigi J(NR) = Sigma2(NR)

continue
end if
return

end

subroutine rngVel(RadRng,GamRng,Cr2Rng,R,Z,Core2, RVel,ZVel)

cceeeceeccceecececceccecceceececcceccececceceececcceeccececceccececccceeccceccecce
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FUNCTION:

To calculate the velocity induced by a circular vortex ring

at a particular field point.

READ-ONLY PARAMETERS:

RadRng -> radius of vortex ring

GamRng -> circulation of vortex ring
Cr2Rng -> square of radius of vortex core
R -> r-coordinate of field point

Z -> z-coordinate of field point

Core2 -> square of vortex core associated with field point

WRITE-ONLY PARAMETERS:

RVel -> r-component of velocity induced by ring
ZVel -> z-component of velocity induced by ring

HOTES :

1. If the field point is in zero-vorticity fluid, Core2
should be equal to Cr2Rng.

2. The calculated velocitiea may be considered to be
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non-dimensionalized by nominal circulation and ring-radius

parameters, each having a value of unity.

3. Subroutine "initJet" should be called once prior to the

first call of this subroutine.

AUTHOR :
David Parekh  (September 1984)
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C =* Define common block.

common /KE/ AO, A1, A2, BO, Bi, B2, C1, C2, D1, D2

common /MANYPI/ HALFPI, PI, TWOPI
C * Define elliptic integral functions.

RK(RM1) = (A0 + (RM1 * (A1 + (RM1 * A2)))) +

& ((BO + (RM1 * (B1 + (RM1 = B2)))) * ALOG(1. / RM1))
E(RM1) = (1. + (RM1L = (C1 + (RM1 =* C2)))) +
& ((RM1 *= (D1 + (RM1 = D2))) #* ALOG(1. / RM1))

C =* Define constants.
data ALPHA /0.2065/
C * Calculate parameters.
RBar = R / RadRng
ZBar = Z / RadRng
RNu = 1. + ZBar**2 + RBar**2 + ALPHA * (Cr2Rng+Core2) / RadRng+*2
Eta = 2 * RBar / RNu
RMI = (1. - Eta) / (1. + Eta)
C =*= Calculate velocity components.
if (R.ne.0.0) then
RVel = GamRng * ZBar * (E(RM1) / (1. - Eta) - RK(RM1)) /
& (TWOPI * R * sqrt(RNu + 2 * RBar))
else
RVel = 0.0
end if
Zvel = (E(RM1) * (1. - RNu / 2) / (1. - Eta) + RK(RM1) * RNu / 2)
& * GamRng / (PI *# RadRng * RNu*+%1.6 * sqrt(t. + Eta))

return

end
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subroutine jetVel(R,Z,Core2, RJtVel,ZJtVel)
¢eeceeecceceeceeccceceeeeceecceccceceecceecccecccecececececeecceeccccecccececceccee

FUNCTION:
To calculate the velocity induced at the point (R,Z) by a
semi-infinite axisymmetric sheet of vorticity. Analytical

aQ aQ aa o0 O

expressions (function rVFunc and function zVFunc) for the

inducea velocity field are used.

READ-ONLY PARAMETERS:
R -> r-coordinate of field point
Z -> z-coordinate of field point

Core2 -> square of core radius associated with field point

WRITE-ONLY PARAMETERS:
RJtVel - > r-component of induced velocity
ZJtVel -> z-component of induced velocity

NOTES:
1. If the field point coincides with zero-vorticity fluid,
the parameter Core2 should be set to Cr2Jet, which is
specified by subroutine initJet.

2. The length variables are nondimensionalized by the jet
radius which is assumed to have a value of unity.

3. Subroutine initJet must be called once prior to the first
call of this subroutine.

AUTHOR:
David Parekh (September 1984)
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C * Define common blocks.

common /JET/ ALPHA, GamJet, Cr2Jet

common /KE/ AO, A1, A2, BO, Bi, B2, ¢1, C2, Di, D2

< mmon /MANYPI/ HALFPI, PI, TWOPI
C * Define elliptic integral functions.

rK(RM1) = (AO + (RM1 * (A1 + (RM1 * A2)))) +

& ((BO + (RM1 * (B1 + (RM1 = B2)))) s alog(1. / RN1))
E(ML) = (1. + (RM1 = (C1 + (RM1 * C2)))) +
& ((RM1 * (D1 + (RM1 = D2))) * alog(i. / RM1))

rI(RM1 ,Eta) = 2 = (xK(RM1) - (1. + Eta) * E(RM1)) /
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& (Eta * sqrt(1. + Eta))
C + Calcualte velocity function arguments.
Rho = 1. + R##2 + ALPHA * (Cr2Jet + Core2)
RNu = Rho + Z*#2
RMu = 2 =+ R / Rho
Eta = 2 = R / RNu
RM1 = (1. - Eta) / (1. + Eta)
C = Calculate velocity components.
Gam = 2 * GamJet
if (Eta.gt.0.05) then
RJtVel = Gam * rI(RM1,Eta) / (TWOPI * sqrt(RNu))
else
RJtVel = Gam * Teri(0.0,Eta) / (TWOPI * sqrt(RNu))
end if
ZJtVel = (HALFPI * (Rho + (2. - Rho) / sqrt(1. - RMux#2)) -
& (2 « rK(RM1) / sqrt(1. + Eta) +
& (RMu - R) * Teri(RMu,Eta)) * Z / sqrt(RNu)) =
& Gam / (TWOPI * Rho)
return

end

subroutine initJet
cceeeceeeceececeecceecceceececececeeecececececcceeecceccecceececeeceeceecccececeeccece

FUNCTION:
To initialize various constants and arrays used by subroutine

jetVel and by the functions jetVel calls.

AUTHOR:
David Parekh (September 1984)

QA aa O G o a O

cceeeecceeceecececeeceecceececceeccceeccececeeeecceccccceecceccececcecceecececececcee
C * Define common blocks.
common /JET/ ALPHA, GamJet, Cr2Jet
common /KE/ AO, A1, A2, BO, Bi, B2, C1, C2, D1, D2
common /MANYPI/ HALFPI, PI, TWOPI
C + Set values of constants and variables.
data ALPHA /0.2065/
data AO, Al, A2 /1.3862944, 0.1119723, 0.0725296/
data BO, B1, B2 /0.5, 0.1213478, 0.0288729/
data C1, C2, D1, D2 /0.4630151, 0.1077812, 0.2452727, 0 0412496/
HALFPI = asin(1.)
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PI = 2 = HALFPI
TWOPI = 2 = PI
Cr2Jet = 0.1#%2
C * Initialize Teri function arrays.
call initTF
return

end
subroutine initTF
cccceeeeececcecceeeecceccecececcceeececcecececececceecececceeceeccccceececceccee

FUNCTION:

To initialize various arrays used by function Teri.

AUTHOR:
David Parekh  (September 1984)

G Q O a a

ccceeeceeccceeccececceecceecceccccccceccececcccceeccececcceccecceecccccceecee
C * Dimension variables and define common block.

dimension CoefNC(0:6)

common /TF/ TCoef (55,8),CosPhi(55,8),NOrder,NPanel
C * Initialize constants.

data NOrder ,NPanel /8,6/

PI = 2 * asin(1.)

CoefNC(0) = 41. / 840.

CoefNC(1) = 216. / 840.
CoefNC(2) = 27. / 840.
CoefNC(3) = 272. / 840.
CoefNC(4) = CoefNC(2)
CoefNC(5) = CoefNC(1)
CoefliC(6) = CoefNC(0)

€C * Calculate coefficient and cosine arrays used by function Teri.
do 100 N = 1 ,NOrder
C * »* TInitialize counters and arguments.
M=0
Ang = 0.
DelAng = (PI / 2#xN)
DelPhi = DelAng / NPanel
C *» * GSet first set of values.
do 110 NC = O, NPanel
M=M+1
Phi = Ang + NC * DelPhi
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TCoef(M,N) = CoefNC(NC) * DelAng
CosPhi(M,N) = cos(Phi)
110 continue
C * * Set rest of the values.
do 120 Int = N,1,-1

C s+ » =x Update subinterval sizes.
Ang = Ang + DelAng
DelAng = PI / 2%*Int
DelPhi = DelAng / NPanel

C =« s+ »* Handle case of a point shared by adjacent subintervals.

TCoef (M,N) = TCoef(M,N) + CoefNC(0O) * DelAng
C * =+ =+ Set values at points in current subinterval.
do 121 NC = 1,NPanel
M=M+1
Phi = Ang + NC * DelPhi
TCoef (M,N) = CoefNC(NC) * DelAng
CosPhi (M,!l) = cos(Phi)
121 continue
120 continue
100 continue
return

end

function Teri(TMu,TEta)
ccceeeeececeeeceeceeceeccececcececeecececeeeeoececeeeececeececeecececcececccececcecccece

C

C  FUNCTION:

c To evaluate the Teri function at the specified values of
c TMu and TEta.

c

C  READ-ONLY PARAMETERS:

C TMu, TEta -> arguments of the Teri function

c

C NOTES:

c 1. A semi-adaptive quadrature scheme based on n-panel

c Newton-Cotes is used to evaluate the Teri functicn.
c

c 2. Subroutine initTF must be called to initialize various
c arrays prior to the first call to this routinme.

C

C  AUTHOR:

c David Parekh (September 1984)
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C
CCccceeeececeececceceececceeecececeeccecececcecececcceceecececceecceccecececcecececccceccececccecce
C =* Define common block.

common /TF/ TCoef (55,8),CosPhi(56,8),NOrder, NPanel

C =* Initialize variables.

Teri = 0
NumInt = 1.0 + NOrder * amaxi(TMu,TEta) ‘subintervals in 1st half
IEnd = (NumInt + 1) * NPanel + 1 !number of points in interval

C * Evaluate Teri function by quadrature.
do 1 I=1,IEnd
Teri = Teri + (TCoef(I,NumInt) * CosPhi(I,NumInt)) /

& ((1. - TMu * CosPhi(I,NumInt)) =

& sqrt (1. - TEta * CosPhi(I,NumInt)))
1 continue

return

end

B.3 SIVSPLINE

Crrkrknsbkbbbdbhbbbbbbbhnsrbsbrsdhbbnbkhhshbkbbrkbkbbbbhbbbbhbhhbbehkbkhk

Vritten by: David Parehkh
Date: August 1984

c

c VORTEX RING SPEED

c

c This program uses a spline techmiqut Lo pprro.lnate
C the self-induced velocity of an axisymmetric, inviscid

c vortex ring. The calculated speed is compared with the
¢ theoretical approximation of the self-induced velocity of
c an inviscid ring with a Gaussian core.

c (For best match of velocities, use ALPHA = 0.2065)

c

c Input: Unit 5

c Output: Unit 6 (program prompts)

c

c

c

c

c‘“‘““““t‘.‘.““‘#‘t#"*‘*“‘ttt“t‘“"ti“t“*t‘.““*“tt‘t‘*‘
C +» Dimension variables and define common blocks.

implicit real*8 (a-h,o0-z)

dimension VelInd(3),RRef(3),RNode(3,10000)

common /P0OS/ RNode

common /PARM/ Gamma, Nodes,ALPHA,COEF
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B B = I =

* Specify constants and parameters and initialize variables.
data VCONST /0.55840/
PI = 2.40 * dasin(1.40)
T4OPI = 2.4d0 = PI
COEF = -1.d0 / (4.d0 * PI)
*« Specify ring coordinates.
* * Specify geometry and circulation of ring.
write(6,999)
999 format (ix, 'enter:',/,1x, 'nodes, core, rad, gamma, alpha’,/)
read(5,*)Nodes,Core ,Rad,Gamma,Alpha
* +* (Generate ring.
Core2 = Core * Core
call genrng(TWOPI,Rad,Nodes,Core2)
* Calculate self-induced velocity by spline approximation.
RRef (1) = RNode(1,1)
RRef (2) = Rlode(2,1)
RRef (3) = RNode(3,1)
call splvel(RRef,Core2,Vellnd)
VelMg2 = (VelInd(1) * VelInd(1)) + (VelInd(2) * VelInd(2)) +
& (VelInd(3) * Vellnd(3))
VelMag = dsqrt(VelMg2)
* Calculate theoretical value of self-induced velocity.
Facl = Gamma / (4.d0 * PI * Rad)
Fac2 = dlog(8.d0 * Rad / Core) - VCONST
SIVel = Facl = Fac2
Error = VelMag - SIVel
PerErr = (dabs(Error) / SIVel) * 100.dO0
* Write results.
write(6,996)
write(6,*) (Vellnd(K), K=1,3)
996 format(1ix,//,2x,'xyz components of induced velocity:',/)
write(6,995) SIVel,Error,PerErr
995 format(//,5x,'Theoretical Velocity = ’,£10.7,/,
5x,'Error = ' ,£10.7,/,
b6x, 'Percent Absolute Error = ',£f10.7,/)
write(10,994) Nodes,Core,Rad,Gamma
write (10,996)
write(10,#) (VelInd(K), K=1,3)
write(10,995) SIVel,Error,PerErr
994 format(/,bx,'Nodes = ',i6,

& /.5x,'Core = ' 7.4,
« /.,bx, 'Rad = ' ,£f5.2,
& /.5x,'Gamma = ', ,£f5.2,/)
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stop

end

SUBROUTINE GENRNG (TWOPI,RAD,CORE2)
ceccceecceceeecececeecccececceceececececceececceccceececcececccecceeccccceccececce

This subroutine (SUBROUTINE GENRNG) specifies the initial
coordinates and core size of the nodes on the newly created

vortex ring.

aQa QO o oo Q

cceeeeeceeececeeceeeeeceeccececeeeecececcceceeccececcceccecccceccecceccceccecceeccece
implicit real+8 (a-h,o-z)
DIMENSION RNODE(3,10000)
COMMON /P0OS/ RNODE
COMMON /PARM/ GAMMA,NODES,ALPHA,COEF
C * Calculate the initial coordinates.
NDIV = O
SECT = NODES
THETA = TWOPI/SECT
DO 10 I=1,NODES
DIV = NDIV
ANGLE = DIV+THETA
RNODE(1,I) = RAD*DCOS (ANGLE)
RNODE(2,I) = RAD*DSIN(ANGLE)
RNODE(3,I) = 0.
NDIV = NDIV + 1
10 CONTINUE
RETURN
END

subroutine splvel(RRef,Core2,Vellnd)
cceeececeecceceecceeceecececceceeceecccececeeeccecccecceccecceccceccccccccceeccccecee

This subroutine (subroutine splvel) calculates the velocity
inducad at the location of a specified node as a result of
the vorticity of the filament(se). A apline is used to
evaluate the Biot-Savart integrand at the node points. The
trapezoid rule is used to evaluate the integral.

a O g a o Q0

ceceecececeeceeceececceecceccecceceeceecccecceecccceececececcececcceccecececceccccceccccee
C * Dimension variables, define common block, and set constants.
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implicit reals8 (a-h,o-z)
dimensicn VelInd(3),RRef (3),RNode(3,10000},Dr(3) ,RDif(3),RDfXDx(3)
dimension DxDs(3,10000),Vec(1C000)
commen /P0S/ Rlode
common /PARM/ Gamma, Nodes, ALPHA, COEF
data SMIN,SDEL /1.40,1.d0/
GCoef = Gamma * COEF
+ Evaluate DxDe at the node points by spline approximation.
call dpsplder(Nodes,SMin,SCel,RNode,DxDs)

* Tnitialize velocity vector.

VelInd(1) = 0.d0
VelInd(2) = 0.d0
VelInd(3) = 0.d0

* Solve the Biot-Savart integral by the trapezoid rule.
do 20C N = 1,Nodes

* * Calculate relative position vector.

RDif (1) = RRef(1) - RNode(1,N)
RDif(2) = RRef(2) - RNode(2,N)
RDif (3) = RRef(3) - RNode(3,N)

RDif2 = (RDif(1) * RDif(1)) + (RDif(2) * RDif(2)) +
& (RDif(3) =* RDif(3))
# % Calculate Biot-Savart integrand at node points.
BSDen = (RDif2 + (ALPHA * (Core2 + Core2)))#*%(-1.5d0)

RDfXDx(1) = (RDif(2) * DxDa(3,N)) - (RDif(3) =* DxDs{2,N))
RDEXDx(2) = (RDif(3) * DxDs(1,N))} - (RDif(1) * DxDs(3,N))
RDfXDx (3) = (RDif(1) = DxDs(2,N)) - (RDif(2) * DxDas(1,N))
Vellnd(1) = VelInd(1) + (RDfXDx(1) * BSDen)
Vellnd(2) = VelInd(2) + (RDfXDx(2) * BSDen)
VelInd(3) = VelInd(3) + (RDfXDx(3) * BSDen)
200 continue

VelInd(1) = GCoef * VellInd(1)

Vellnd(2) = GCoef * VelInd(2)

VelInd(3) = GCoef * Vellnd(3)

return

end

121




subroutine dpsplder (NumPts,XMin,Delta,KYData, DfDx)

CrEtdx b r R e R R R R AR KR AKERBRREAR KRS K ER AR SRR R AR ARSRE SRR AR AR R R AR kAR R RS

QO OO 0O G O 0o o aao06oaaaaaooan0aaag

QO G O O O 0O a0 a0 aqaaqaaa

FUNCTION:
This subroutine (DPSPLDER) fits a set of evenly-spaced data
with a periodic cubic spline and evaluates the value of the

firat derivative at the data points. Double precision is used.

READ-ONLY PARAMETERS:
NumPts -> number of data points
XMin -> value of independent variable at first data point
Delta -> size of subinterval

YData -> vector of 3-D data

DfDx -> value of first derivative of spline function at nodes

NOTES:

The coefficient matrix of the vector of unknown second
derivatives is tridiagonal with the exception of the elements
(1,4) and (N,1). The matrix is stored in the three vectors
DiagUp, DiagMn, and Diaglw, which represent the three diagonals.
The elements DiagUp(N) and DiagLw(N) are not used.

The vectors RowN and ColN represent the Nth row and column
of the coefficient matrix. The last elements of RowN and
ColN are not used.

The vector YData should not include the last data point of the
the periodic curve since it is assumed to be equal to the first.
The number of data points must be at least 3 and at most 10000.

AUTHOR :
David Parekh  (August 1984)

Crrk bbbk bRk bbbt bk o kbbb bbb kRt kb k bk kR kr R AR AR B R AR e R R Rh kbR kEE

implicit real*8 (a-h,o0-z)
dimension YData(3,NumPts + 2),DfDx(3,NumPts)
dimension DiagUp(10000) ,DiagMn(10000) ,DiagLw (10000)
dimension RowN(10000),ColN(10000)
dimension YVec(3,10000),D2fDx2(3,10002)
Initialize vectors and NP1.
do 1 N = 1 NumPts
DiagUp(N) = 0.254d0
DiagMn(N) = 1.d0
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DiagLw(N) = 0.2540
RowN(N) = 0.d0
ColN(N) = 0.d0
1 continue

NP1 = NumPts - 1

NP2 = NumPts - 2

RowN (1) = 0.25d0

RowN(NP1) = 0.25d0

ColN(1) = 0.25d0

ColN(NP1) = 0.2540

* Compute vector on right hand side of matrix equation.

do 10 I =1,3
do 11 N = 2,NP1
YVec(I,N) = YData(I,N-1) - (2 * YData(I,N)) + YData(I,N+1)

11 continue
YVec(I,1) = YData(I,NumPts) - (2 * YData{I,1)) + YData(I,2)
YVec(I,NumPts) = YData(I,NP1) - (2 * YData(I,NumPte)) +

& YData(I,1)

10 continue

* Bolve system of equations by Gauss-Jordan technique.

* * Perform forward elimination and normalize diagonal elements.
(Note: the lower diagonal is not updated to O to save cost.)
(Note: the (1,1) element is assumed to be initially 1.)

* * x Do all but the last set of operations.

do 20 NF = 2,NP1
NF1 = NF - 1
* * * * Forward elimination of lower diagonal.
Factor = DiagLw(NF1) / DiagMn(NF1)
DiagMn(NF) = DiagMn(NF) - (Factor * DiagUP(NF1))
ColN(NF) = ColN(NF) - (Factor * ColN(NF1))
do 21 I =1,3
YVec(I,NF) = YVec(I,NF) - (Factor * YVec(I,NF1))
21 continue
* * % =+ VlNormalization of row NF.
DiagUp(NF) = DiagUp(NF) / DiagMn(NF)
ColN(NF) = ColN(NF) / DiagMn(NF)
do 22 1I=1.,3
YVec(I,NF) = YVec(I,NF) / DiagMn(NF)
22 continue
DiagMn(NF) = 1.d0
* + % x Forward elimination of bottom row.
Factor = RowN(NF1)
RowN(NF) = RowN(NF) - (Factor = DiagUp(NF1))
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23
20

25

35

DiagMn (NumPts) = DiagMn(NumPts) - (Factor ¢ ColN(NF1))
do 23 I =1,3

YVec(I,NumPts) = YVec(I,NumPts) - (FactorsYVec(I,NF1))

continue
continue
Update certain elements.
DiagLw(NP1) = RowN(NP1)
DiagUp(NP1) = ColN(NP1)
Complete forward elimination process.
Factor = DiagLw(NP1) / DiagMn(NP1)
DiagMn(NumPts) = DiagMn(NumPts) - (Factor * DiagUp(NP1))
do 256 T =1,3
YVec (I,NumPts) = YVec(I,NumPts) - (Factor * YVec(I,NP1))
YVec (I, NumPts) = YVec(I,NumPts) / DiagMn(NumPts)
continue
DiagMn (NumPts) = 1.dO

Perform back elimination and scale D2£fDx2. Without scaling,
the result would be (D2fDx2 / Coef) instead of D2fDx2.

(Note: the upper diagonal is not updated to O to save cost.)
Delta2 = Delta * Delta

Coef = 6.d0 / (4.d0 * Delta2)

*

Start back elimination process.
do 35 I = 1,3
D2£fDx2(I,NumPts) = Coef * YVec(I,NumPts)
YVec(I,NP1) = YVec(I,NP1) - (DiagUp(NP1)*YVec(I,NumPts))
D2£fDx2(I,NP1) = Coef * YVec(I,NP1)
continue
Complete back elimination process.
do 30 NB = NP2,1,-1
NBL = NB + 1
do 31 I =1,3
YVec(I,NB) = YVec(I,NB) - (DiagUp(NB) * YVec(I,NB1))
- (ColN(NB) * YVec(I,NumPts))
D2fDx2(I,NB) = Coef * YVec(I,NB)
continue
continue
Specify periodicity conditions.
N1 = NumPts + 1
N2 = NumPts + 2
do 36 I = 1,3
D2fDx2(I,N1) = D2fDx2(I,1)
D2fDx2(I,N2) = D2fDx2(I,2)
YData(I,N1) = YData(I,1)
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YData(I,N2) = YData(I, 2)
36 continue
* Evaluate DfDx.
Fac = Delta / (-6.d0)
do 40 NP = 1,NumPts
NP1 = NP + 1
do 41 I =1,3
Termi = (YData(I,NP1) - YData(I,NP)) / Delta
Term2 = Fac * ((2.d0 * D2fDx2(I,NP)) + D2fDx2(I,NP1))
DfDx(I,NP) = Termi + Term2
41 continue
40 continue
return

end
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Appendix C

TABLES OF PARAMETERS

Table C.1. Parameters of Bifurcating Jet Simulations

Index Excitation A, St, G N
01 flapping 0.1 0.50 0.10 32
02 flapping 0.2 0.50 0.10 32
03 flapping 0.1 0.30 0.10 32
04 flapping 0.5 0.50 0.10 32
05 flapping 0.5 0.30 0.10 32
06 helical 0.5 0.30 0.10 32
07 helical 0.5 0.30 0.03 32
08 helical 0.5 0.30 0.10 32
09 helical 0.5 0.40 0.10 32
10 helical 0.5 0.35 0.10 32
11 helical 0.5 0.45 0.10 32
12 helical 0.5 0.25 0.10 32
13 helical 0.5 0.43 0.10 32
14 helical 0.5 0.42 0.10 32
15 helical 0.1 0.20 0.10 32
16 helical 0.3 0.35 0.10 32
17 helical 0.3 0.32 0.10 16
18 helical 0.3 0.38 0.10 16
19 helical 0.3 0.30 0.10 16
20 helical 0.3 0.30 0.10 32

Table C.2. Comparison of Physical Parameters

Lee & Reynolds (1985b) Current Work
Fluid Water Air
Re 2,800-10,000 10,000-100,000
Stq 0.3-0.7 0.40-0.65
U (m/s) 0.2-0.8 7-15
f (Hz) 5-40 130-2,400
D (cm) 1.27 2.15 & 2.00
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Table C.3. Parameters of Bifurcating Jet Experiments

!

Nomuna. foc 23,000 | 28,300 25,300 50,000 100,000
U (m/s) 7.1 14 18.4 36.9 75.6
D {cm) 2.15 2.15 2.00 2.00 2.00
v (cm?/s) 0.15 0.15 0.154 0.155 0.162
Actual Re 10,000 20,000 23,900 47,700 93,400
fa (Hz 180 386 516 1030 2060
fr (Hz 90 193 258 515 1030
St 0.55 0.59 0.561 0.558 0.545 |
Sty, 0.27 0.30 0.280 0.279 0.273
bw/R 0.12 — 0.043 0.025 0.018
u' /U 0.013 0.006 0.005 0.003 0.002
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Figure 3.7. Comparison of jet function veloci

(a) = 0.1, (b) = 0.01.
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Figure 3.8. Evolution of unexcited, axisymmetric shear layer
(source flow not included).
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Figure 3.16. Comparison of bifurcating jets at St, = 0.35 and at
(a) Ap, = 0.3 and (b) A; = 0.5.
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Figure 3.19. End views of bifurcating jets at A, = 0.5 and at
(a) Stq =0.30 and (b) St, = 0.40.
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Figure 3.20. Bifurcating jet at Sty = 0.42 and A = 0.5 and
at two different times.
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Figure 3.22. Onset of bifurcation at (a) St, = 0.30, (b) Stq = 0.42,
and (c) Stg = 0.43.
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Figure 3.23. Initial ring formation in the (a) absence and
(b) presence of source flow.
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Figure 3.32. Interaction of a pair of side-by-side, multi- filament rings.
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Figure 3.33. Interaction of a pair of eccentric, multi- filament rings.
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Figure 5.4. Mean and fluctuating velocity profiles at Re = 100,000
and z/D = 0.05.
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[ignre 5100 Inctantaneous cross-section of natural jet at Ke 100, 000.
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Fioare 513 Multiplecexposure cross-zection of natural jet at I?e
(F 1.
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Figire 5.14. Multiple-exposure cross-section of natural jet at Re

(F 4.
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Figure 5.16. Axially-excited jet at Re = 20,000, St, - 0.55,
and p, - 1.6% (F = 1).
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Fignre 517, Axially-excited jet at Rc = 10,000, St, — 0.55,
and p, (F 1),




Figure 5.1%. Instantaneous pictures of axially-excited jet at different phases
of excitation (Re - 10,000, St, = 0.55, and p, - 12%).
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Fignire 5200 Axially-excited jet at e - 50,000, St,
and p, 1A (F 1),
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Figure 5.22. Axially-excited jet at Re = 50,000 and St, = 0.55 and at
different ps: (a) 1.4%, (b) 2.7%, (c) 6.5%, and (d) 13%. F — 1.
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Figure 5240 Axially-excited jet at Be  100.000 and St,  0.55 and at
different poo (a) 03570 (b) 0657, (¢) 2897, and (d) 550 F 1.
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Figure 5250 Axially-excited jet at fte 100,000 and St,,  0.55 and at
(1)

different p,: fa) 0377 (b) 0.6%, (¢) 2.8, and SAHT T
/ ,
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Figure 5.26. Axially-excited jet at Re = 25,000, St, = 0.55,
and p, = 18% (F = 4).




T D N ¥ M A S T S .




L= '59°0 () pue ‘090 (4) ‘65°0 (®) P28 juazayip
1 pue 98z = Pd pue 900 ‘001 = 2y ¥ 19 pajloxa-A|[eIXY "8¢'Q 3Indi

204




‘wnua[d oy} Ul ISALIP 3y} Aq padnpoid si uolje}Idxs [elxe ayj,
'8 =d "%1'¢ () pue ‘%0 (4) ‘%0 (2) :°d juaroyip
pue gG'Q0 = P38 pue 000 ‘0S = 2y e 18{ pajxe-A[[RIXY ‘67 S 21031

-l G BN I O EN B 0 S B B S B G B AR B B




L ———
EE . G A =N A B S D B S B S e v B0 BB

"98°0 = P15 pU® 000 ‘001 = 3Y 9e
Jurotoy [eixe (LT = 4 pue %0g0 = d) [eurayxs (q) pue
(8 = 4 pue %3z'0 = d) [euldjul (®) Jo sy29s ay3 jo uostredwo) ‘gg’g 2In31 g




]H

"$6°0 = 1§ PU® 000 ‘00T = 3y 1e
Bupuoj [eixe (LT = 4 pu® % L'g = d) [euIajXa (q) pue
(8 = 4 pue %46'T = d) [eussjul (e) jo s309a ayj jo uostredwo)) '1g'g 2Indiyg

207

Il G B @ W T S S A I o & T AR & AN D B .




Figure 5.32. Helically-excited jet at Re - 25,000, St; = 0.28,
and py = 0.2% (F = 1).
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31 Helically-excited jet at Re 100,000, St 0.27,
and py, 077 (F 1),
210




Figure 5.35. Helically-excited jet at Re -

50,000 and St, =- 0.28 and at
different py,: (a) 0.35, (b) 0.6%, (¢) 1.2%, and (d) 2.4%. F
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Figure 5.36.

Helically-excited jet at Re — 100,000 and Stq = 0.27 and at
different py: (a) 0.1%, (b) 0.2%, (c) 0.4%, and (d) 0.7%. F
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Figure 5420 Bifurcating jet at Re -~ 10,000, St, - 0.55, p, — 12%,
and p,  38%. F 1.
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Bifurcating jet at, Re — 50,000, St, == 0.55, p, = 6.5%,
and py, 1.2%. F




Figure 5.45.







d

Figure 5.47. Phase-evolution of bifurcating jet at Re = 100,000, St, = 0.55,
Pa = 2.8%, and pp, = 0.71%. F = 17.
The phase increment is 45°.
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(-

(Continued) Cross-sections of the bifurcating jet in different azimuthal
planes (Re 100,000, St, 0.55, p, 1.4%, and py = 0.69%).

[ 17. The phase increment between successive planes is 307,
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Biftircating jet at I?e 50,000, St,
(a) 03077, (b) 0.60°7 . (¢) 1.277,
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Fraure 5.

YD)

‘2
).

Bifurcating jet at ffe 50,000, St, = 0.55, p,

and py

(a) 0.30%, (b) 0.60%, (c) 1.2°
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Fignre 554, Bifurcating jet at Re 50,000, St,  0.55, p, -~ 6.5,
and p, 129 F 17
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Figure 5.57. Bifurcating jet at Re = 100,000, St, = 0.55, py, = 0.36%,
and pg =(a) 0%, (b) 0.29%, (c) 1.4%, (d) 2.8%. F = 1.
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Figure 5.58. Bifurcating jet at Re = 100,000, Sty = 0.55, pp, = 0.36%,

and p, - (a) 0.29%, (b) 1.4%, (c) 2.8%, (d) 5.5%. F
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Figure 5.59. Bifurcating jet at Re = 100,000, Stq = 0.55, f, = 1.4%,
and p, =0.71%. F = 17.
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Figure 5.65a. Dependence of bifurcating jet’s spreading angle on excitation
amplitudes at St, = 0.55 and at Re = 100,000. Axial and
helical excitations are both produced by the external acoustic drivers.
Measurement uncertainty is +5°. Lines connect symbols
simply to enhance readability.
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Figure 5.65b. Dependence of bifurcating jet’s spreading angle on excitation
amplitudes at St,; - 0.55 and at [fe -~ 50,000. Axial and
helical excitations are both produced by the external acoustic drivers.
Measurement uncertainty is 1 5°. Lines connect symbols
simply to enhance readability.
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Figure 5.66. Dependence of bifurcating jet’s spreading augle cn excitation
amplitudes at Re = 10,000 and 100,000 and at St, = 0.55.
Axial excitation is produced by internal acoustic driver.
Measurement uncertainty is £5°. Lines connect symbols

simply to enhance readability.
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Figure 5.67. Velocity profiles of natural and bifurcating jets at Re = 100,000
and z/D = 8.5. Separate excitations are used in the bifurcating

jet, with g = 1.8% and pj, = 1.4%.
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